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ABSTRACT

Let R be closed, bounded, simply connected
region in the plane. Let P denote the Dirichlet
problem Auxx + 2Buxy + Cuyy = G on R in which A, B,
C, G depend on x, y, u, u,, uy. It is assumed that
A,B,C satisfy a uniform ellipticity condition and a
condition (see L. Bers, F. John, and M. Scheichter,
"Partial Differential Equations," Interscience Publ.,
1964, pp. 262-264) which enables uniqueness of the
solution of P to be established by means of a maximum
principle; also it is assumed that R and the coeffi-
cient functions are such that u € C4 on R. Several
finite difference analogues of P are studied which
use, essentially, central differences except near
the boundary. One such scheme uses the method of
J. H. Bramble and B. E. Hubbard, "Contributions to
Differential Equations,*" 2, 319-340, 1963, to treat
the term 2Buxy. It is shown that the solutions of
the finite difference analogues converge, with de-
creasing mesh width h, to the solution of P. Moreover,
the error is O(hp) with p either one or two depending
on which particular combination of difference equations
in the interior and at the boundary of R is used.
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CHAPTER 1
INTRODUCTION

In this paper, we are concerned with the problem of extending the
theoretical justification for using the method of finite differences to ob-
tain numerical approximations to solutions of Dirichlet problems involving
second order, quasilinear, uniformly elliptic partial differential equations
in two independent variables on a closed, bounded, and simply connected
region R.

The use of the method of finite differences results, through a pro-
cess of "discretization,' in numerical approximations to values of the so-
lution of a given problem at a discrete set of points in the region asso-
ciated with the problem. The points, called mesh points, at which numerical
approximations are calculated are separated by a characteristic distance
called the mesh width, The use of a finite difference method is theoreti-
cally justified if it can be shown that solutions of the resulting finite
difference analogues corresponding respectively to successively smaller
mesh widths converge to the solution of the continuous problem.

Until recently, the investigations of the convergence, with decreas-
ing mesh width, of finite difference analogues of Dirichlet problems for
elliptic partial differential equations have been concerned with linear equa-
tions. A brief review of the results of these investigations is helpful in

placing similar studies for quasilinear equations in proper perspective,

1Some of the results contained in this dissertation were first an-
nounced in Abstract 66T-287, Notices, Amer. Math. Soc., 13, 496 (1966).



Studies of the convergence of solutions of finite difference ana-
logues of linear elliptic partial differential equations can be roughly
classified into two groups. The principal objective of the studies in the
first of these two groups is to prove that the solutions of a finite dif-
ference analogue of a given continuous problem converge, as the mesh width
is decreased to zero, to a solution of the given problem. One of;the first2 of
these studies is reported in Courant, Friedrichs, and Lewy [1928].3 In
this, it is shown that solutions of a finite difference approximation to
the Dirichlet problem for Laplace's equation converge, with decreasing mesh
width, to the solution of the given problem. However, the proof given is
nonconstructive in the sense that it provides no means by which the error
in a solution of a finite difference analogue corresponding to a finite
value of the mesh width can be estimated,

The studies included in the second group provide considerably more
extensive results in that explicit estimates for the error, expressed either
in terms of the boundary values and the shape of the region associated with
the problem or by means of the solution of the continuous problem, are given.
However, in order to get these '"better'" results, more conditions must be im-
posed on the coefficient functions, the boundary values, and the shape of
the region. The usual requirement is that the solution of the continuous
problem possess bounded partial derivatives up to fourth order. Of these
studies, one of the earliest and best known is Gerschgorin [1930].4 Gersch-

gorin establishes convergence, with decreasing mesh width, of solutions of

2See, also, Downing [1960].
3The use of brackets, [ ], indicates reference to the bibliography,

éSee also Laasonen [1957], Rosenbloom [1952], Walsh and Young [1953],
[1954], and Wasow [1952], [1957].




the finite difference analogue of the Dirichlet problem for Laplace's equa-
tion considered by Courant, et al, [1928], by showing that the error in a
solution of the finite difference approximation corresponding to a finite
value of the mesh width is majorized§ by a function whose modulus is pro-
iportional to the product of the square of the mesh width and the maximum of
the moduli of the fourth partial derivatives of the solution of the continu-
ous problem, Gerschgorin also considers Dirichlet problems involving some-
what more general elliptic partial differential equations than Laplace's
equation; however, fairly severe restrictions are placed on the coefficients
in these equations.

The investigations reported in this paper concerning finite differ-
ence analogues of Dirichlet problems for quasilinear elliptic partial dif-
ferential equations are in the second of the two groups described above,
whereas, other published results for quasilinear equations are, for the
most part, in an intermediate position between these two groups.

Although the method of finite differences is widely used to obtain
approximate solutions of Dirichlet problems for quasilinear elliptic par-
tial differential equations, the theoretical justification for such proced-
ures is very limited. The earliest published proof of the convergence, with
decreasing mesh width, of such approximations is given in Bers [1953]. In
this investigation, the use of the finite difference method for obtaining

approximate gsolutions of the problem given by

SA function f 1is majorized by a function g in a region R 1if
|f| s g at every point in R.

5A more detailed discussion of Gerschgorin's results is given in
Chapter XI where a comparison is made between these results and the results
obtained in the sequel,



(L.1) Au = F(x,y,u,0u/dx,du/dy), (x,y) € R

(1.2) u = g(x,y) ’ (x,y) € 8

where A denotes the Laplace operator az/ax2 + az/ayz, R 1is a simply
connected, bounded region in the plane with boundary S, and g 'is a given
continuous function on S 1is studied, It is shown that if the partial
derivative of F with respect to u is nonnegative and if the partial
derivatives of F with respect to Ju/dx and Ju/dy are uniformly bounded,
then the Dirichlet problem for the finite difference equation obtained by
replacing the derivatives of equation (1.1l) with central divided differ-
ences has a unique solution and that the solution of this problem tends to

a solution of the given problem as the mesh width is decreased.

Studies of the Dirichlet problem given by equations (1.1l) and (1.2)
where F = F(x,y,u) are reported in Ablow and Perry [1959], Pohozaev [1960],
Douglas [1961], Levinson [1963], McAllister [1964c], Parter [1964], and
Greenspan and Parter [1965].

Ablow and Perry and Pohozaev consider the existence of a nonnegative
solution ;f this problem where F = u2 and g 1is nonnegative, The exis-
tence of a unique solution of the continuous problem is demonstrated. Mc-
Allister studies a discretized version of the same problem and proves con~
vergence for an iteration scheme given by Ablow and Perry,

Douglas [1961] presents an algorithm for solving the nonlinear system
of algebraic equations which arise from discretization of the problem given
by equations (1.1) and (1.2) where F = F(x,y,u) which utilizes the alter-
nating direction implicit iteration method. The region R 1is taken to be
the unit square in this study, and convergence of solutions of the discretized

problem with decreasing mesh width is proved provided




oF
So (x,y,u) 2 A>~ 21, (x,y) € R.
In Levinson [1963], the problem studied by Douglas [1961] is treated
analytically for a more general region subject to certain smoothness condi-

tions and the condition

lim inf TEXa®) 5 o (x,y) € R.

[ulﬁ:w u
Levinson proves that the given problem has a bounded solution. u ‘of class
02 in R and of class C in R + S.

The results reported in Parte? [1964] and in Greenspan and Parter
[1965] consist of extensions and applications of Levinson}s results. The
behavior of solutions of finite difference anaiogues of the problem con-
sidered by Levinson are studied, and convergence of these solutions, as the
mesh width 1s decreased, to a solution of the continuous problem is estab-
lished provided the continuous problem is assumed to have a unique solution
and the finite difference equations are of ''positive type."z
The solution of a finite difference analogue of a Dirichlet problem

involving an elliptic partial differential equatdon containing a different
type of nonlinearity from those listed above is reported in Young and Wheeler
[1964]. The use of the Peaceman-Rachford method to solve the linear systems
which arise together with the use of '"natural iteration"8 is investigated

as a means of solving a finite difference analogue of the problem given by

7'For a definition of finite difference equations of ''positive type,"
see Forsythe and Wasow [1960) or Chapter III of the sequel,

¢

8The method of 'matural iteration' is described in Chapter IV,



(a/ax)j(w du/dx) + ©/Jy)(Wou/dy) + 1 = 0, (x,y) € R

W [Qux)? + Qw212 g <cns1, (x,y) € R

1 1
d/‘ u/\ u(x,y) dxdy = 1
ovo

u(x,y) = 0, (x,y) € 8

where R 18 the unit square with boundary S. However, no convergence
proofs are given in this paper.
There are two closely related papers, McAllister [1964a], [1964b],

in which the convergence, with decreasing mesh width, of solutions of finite

difference approximations to Dirichlet problems for equations of the form9

A(x,y,u,au/Bx.au/ay)Bzu/ax2 + ZB(---)azu/Bxay + C(---)Bzu/ay2
- = 7(==-)u=0

is studied. The coefficients are Lipschitz functions of their arguments,

A. dpd: G - satisfy relations of the form

Ky 2 8(-=~), C(---) 2 p >0

uniformly in the arguments, and

|B] < u/2.

In McAllister [1964a], ¥ = 0 and the boundary values are required

9’I‘he notation used here of denoting the arguments of a function
by (~--) will be used frequently when several functions of the same sget
of arguments occur in an equation or series of terms.




to satisfy a three-point condition.ko In McAllister [1964b], B = 0, and the
arguments of the coefficients are (x,y,u), and if d 1is the diameter of
the region-bf the problem, it is necessary that d2 < ul/2,

There are many more individual results which are concerned with the
solutions of particular problems.

In this paper, we consider finite difference analogues of the Diri-

chlet problem for the following quasilinear partial differential equation

(1.3) A(x,y,u,bu/ax,aulay)azulax2 + ZB(---)azu/axay
+ C(---)d%u/dy? = G(---)

which is assumed to be uniformly elliptic.Ll

The techniques and results presented include the following:

Two finite différence approximations to equation (l1.3) are given
constructively which agree with the differential equation to terms which
are O(h2)12 where h is the mesh width. The existence of the first of
these two approximations, which is of nonnegative type, is proved in Bramble
and Hubbard [1963]. The second approximation presented is more convenient

for practical use for some problems than the one due to Bramble and Hubbard

but is not necessarily of nonnegative type.

oA three-point condition on the boundary values is defined in
Chapter XI, part 3,

ulEquat::Lon (1.3) is uniformly elliptic if there exist pwositive con-t.: s

k k, such that

0° 1
k1(52+n2) z Ag?‘ + 2BEn + an z ko(g2+n2)
for all real ¢ and n and for all permissible values of the arguments of
A, B, and C.
12Kere, as usual, we say that £(t) = 0(g(t)) as t — a if there ex-

ists a number M such that |f(t)/g(t)| < M for all t sufficiently close
to a.



Two methods for formulating finite difference approximations at
mesh points near the boundary are considered. These include a linear inter-
polation scheme due to Collatz [1933] and asymmetric approximations to equa-
tion (1.3) which agree with the equation to terms which are O0(h).

Two finite difference analogues of the Dirichlet problem for equa-
tion (1.3) are analyzed. These two finite difference boundary value prob-
lems utilize the approximation due to Bramble and Hubbard at interior mesh
points and differ according to the approximations used at mesh points near
the boundary. They are denoted as problems Pl and P2°

The principal results obtained are the theorems, for sufficiently
small mesh width, of the existence of golutions of each of the finite dif-
ference problems and the derivation of bounds for the errors in these solu-
tions.

Error bounds are derived which are proportional to the product of
hp, p 2 1, and the maximum of the moduli of the fourth partial derivatives
of the solution of the continuous problem for each of the finite difference
analogues considered.

Those aspects of the analysis which are believed to be new are:

(i) The partial differential equation studied is more general than
previously reported investigations of finite difference approxi-
mations to quasilinear elliptic partial differential equations.

(11) Convergence, with decreasing mesh width, of solutions of the
finite difference analogues to the solution of the continuous
problem is proved by means of error bounds which are O(hp).

(i1i1) The only restrictions placed on the region of the problem are

that it be closed, bounded, and simply connected and that the

boundary of the region be sufficiently smooth that the solution




of the continuous problem has bounded and continuous fourth
partial derivatives.
(iv) ‘This is the first study in which the Brouwer Fixed Point

‘Theorem is used to obtain error bounds directly,

The principal limitations of the study are:

(1) The smoothness requirements on the boundary of the region of
the problem are frequently not met in practical applications.

(i1) It is required that the functions A, B, C, and G in equa-
tion'(1.3) satisfy a condition which is sufficient to guarantee
that the solution of the continuous problem satisfies a maxi-
mum principle. This condition involves the solution of the
problem itself; thus, it is sometimes necessary to examine
these functions after a solution is obtained in order to veri-

fy that all requirements are satisfied.

A brief outline is given below of the arguments and techniques which-
are used in this study.

First, the mixed derivative term is eliminated from equation (1.3)
by the introduction of a thira independent variable z. This is done in
such a way that a finite difference analogue of the continuous problem which
is of nonnegative type can be formulated., The variable 2z is specified by
specifying the angle T between the z and x axes at each mesh point.

The transformed equation has the form

A'(x,y,u,au/ax,au/ay)azu/bx2 + 23'(---)32u/8z2
(1.4)
+ C'(---)bzulay2 = G(=-~).

The finite difference boundary value problems, Pl and P2’ are formulated

for the transformed equation (l.4). Next, finite difference equations are



10
derived for the error E which is defined by

E=U-~-u

where U denotes a solution of one of the finite difference analogues of

the continuous problem and u denotes the solution of the continuous prob-
lem. The functions U are replaced by (u+E) 1in each of the finite dif-
ference equations comprising each of the problems P1 and P2' In each case

the finite difference equation for the error has the form

(L.5)

+ zn'(---mf(u )+ €' (==)D2(uy 48, ) = G6(==-)

ij ij ij

where Dx’ Di, etc, denote applicable finite difference approximations to
Q}Bx and 32/3x2 respectively, etc.

The finite difference equations for the error are rewritten by repre=-
senting the functions A', B', C', and G 1in equation (1.5) in terms of a
definite integral, We illﬁltrate the technique used by considering the

function
: .
A (xi’yj’(ui,j+Ei,j)’Dx(ui,j+Ei,j)’Dy(ui,j+Ei.j))'
Assume that the first partial derivatives of A' are continuous and let
- Al
A(G) = A (xi’yj’(ui,j+°Ei,j)’Dx(ui,j+dzi,j)’Dy(ui,j+eEi,j))'

Thgn
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AGrgygaCuy 4By 0Dy g4y, 3000y g 484, )

1
- A'(xi’yj'ui,j'nxui,j’Dyui.j) + L (dr/de)de

(1.6)
1
- ' '
A (xi’yj’ui.j'Dxui,j’Dyui,j) + Ei.j L Ar de
1 1
+ D E A'de + D E A' de
x 101\./:) P y i,] »/:) q
where
A s}

v 7 WGy tE, ) ATy (g OB (a0 (g yrORy p0aDy (g ¥9R, 40

1,3

' - o) oo ' - o)
A bnx(ui’J-i-OEi’j)A( ), and A Sny(ui.jwz

A'(---).
1,1

By using expansions such as equation (1.6) together with the linearity of

the difference approximations to the derivatives and relations of the form

Dxui,j - Bui’j/Bg + o(hP)

and

Diui,j - azui’j/axz + O(hp),

the finite difference equation fér the error is written in the form

2 2 2
D E 2b D E D E d D_E
21,1%50,0 T %1, 1% 0,0 T 00,5 T %000,
(1.7)

*oeg, P, T fi,iBL, T By,

where the coefficients are functions of Xis Yoo U , and Ei .
b RO % 2]
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By using previously designated bounds on the coefficients in equa-
tion (1.3) and on the solution of the continuous problem, equation (l1.7) is
shown to be uniformly elliptic. Moreover, the function g 1is O(hp) where
p 1s elther one or two depending on the difference approximations to the
derivatives which are used.

Next, we linearize the error equation (1.7) by replacing E, where
it occurs in the coefficients, by a given function w. We then consider
the boundary value problem for the linearized equation (l.7) with boundary
values which are identically zero., We show that this problem has a unique
solution which, for sufficiently small mesh width, is majorized by the

function

ey, 3194,

(1.8) Hi,j - m;x

where J is a nonnegative, bounded function which depends on the ellipti-
city constants for equation (1.7) and the size of the region R. The method
used to establish the estimate (1.8) and the resulting generality of the
finite difference equations to which it applies are believed to be new.

We let Wp denote the set of functions defined on the mesh points
in R such that 1if w e Wb; then
m;f lwi,jl s YnP

where Y = max Igi |Ji h"P and p 1s either one or two.
R ’j .J

The Dirichlet problem for equation (l1.7) is now considered as a

transformation T3

(1.9) Tw = s.
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The function w in equation (1.9) is the function which is used to linearize
equation (1.7), and the function s 1is the solution of the Dirichlet problem
for the linearized equation., By virtue of the bound provided by equation
(1.8), the transformation T transforms a function w from the set Wp

into a function s which is also in the set Wp. Since the transformation

T 1is continuous, the Brouwer Fixed Point Theorem can be applied to show

that the transformation T has a fixed point in W;, i.e., there exists a

function wk* ¢ Wb such that
Twk = wk;

consequently

P
m;* th’jl s Yh",

Dirichlet problems for the error in the solutions of each of the
problems P1 and P2 are formulated by using the appropriate difference quo-
tients in equation (1.7). The results of the analysis described above are
applied to these finite difference problems to establish the existence of
the error functions E and to establish error bounds in terms of the mesh
width,

The organization of the remaining chapters is as follows:

Chapter II consists of a description of the continuous problem
studied, Consideration of sufficient conditions to establish uniqueness
for the solution of the continuous problem leads naturally to sufficient
conditions for the analysis of the finite difference analogues which follow.

Chapter III is devoted to the formulation of finite difference approxi-
mations. The transformation used to eliminate mixed derivative terms and
the finite difference approximations used to replace the differential opera-

tors are described.
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In Chapter 1V, the finite difference analogues, problems Pl and
Pz, of the continuous pvqblem are formulated, Brief discussions are given
of some of the more commonly used methods for solving the sets of nonlinear
simultaneous algebraic equations which result from the formulation of the
finite difference problems.

Chapter V consists of the derivation of finite difference equations
for the error in the solutions of the finite difference analogues of the
continuous prS?lem.

In Chapter VI, bounds are established, uiing majorant functions,
for the solutions of the Dirichlet problems for the linearized error equa-
tions.

In Chapter VII, the Brouwer Fixed Point Theorem is applied to the
Dirichlet problems for the error equations to establish bounds for the
error in the solutions of the finite difference analogues of the continuous
problem.

In Chapter VIII, the existence and uniqueness of solutions of the
finite difference analogues of the continuous problem is proved. Use is
made of the results obtained in Chapter VI to enable a fixed~-point argument
to be used,

Chapter IX consists of a further analysis of the error in the solu-
tion of a finite difference analogue which utilizes finite difference opera-
tors at mesh points near the boundary wﬁich have O(h) accuracy. It is
shown Ehat the bound established in previous sections for the error in the
solution of this problem can be improved from O(h) to 0(h2).

In Chapter X, a new finite difference operator is proposed which is
more convenient for use for some problems than the finite difrerence opera-

tors which were descriped in Chapter III. This new operator differs from
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previous operators only in the manner in which terms containing partial
derivatives with respect to 2z are treated. The new operator is not neces-
sarily of nonnegative type, and this leads to some difficulty in establishing
some of its properties. It is necessary to make an assumption, which has
been verified by direct calculation for a number of cases, in order to show
that the error ahalysil presented in previous chapters applies.

In Chapter XI, a comparisqn is made between the results achieved in
this investigation and Gerschgorin's earlier results. Also, the applications

of the results of this investigation are discussed with reference to specific

problems.



CHAPTER II

DIRICHLET BOUNDARY VALUE PROBLEM FOR A QUASILINEAR

ELLIPTIC PARTIAL DIFFERENTIAL EQUATION

In this chapter, we describe the Dirichlet problem which we study.
The smoothness requirements which are placed on the coefficients.in the
differential equation, on the region of the problem, and on the boundary
values are stated, and the existence and uniqueness of the solution of
this problem are discussed.

Let R denote a simply connected, bounded region in the plane, and
let S denote the boundary of R. We assume, without loss of generality,
that R 1lies in the strip 0 s x S X and that |y| s Y. The boundary §
is assumed to consist of a set of points with coordinates x,y which can
be regarded as functions of arc length s. The functions x(s), y(s) are
assumed to have fourth derivatives which are Holder continuous.1

Let A, B, and C represent real-valued functions with Holder con-
tinuous partial derivatives of second order of the five variables
x,y,2,P,9); (x,y) eR + 8, -» <r,p,q <.

We consider the following quasilinear operator
(2.1) Lu= A(x,y,u,au/ax,au/ay)320/3x2+ 2B(---)32u/3x8y + C(---)a2u/ay2.

The operator L 1is assumed to be uniformly elliptic, i.e., there exist

constants ko, k1 > 0 such that

1A function g(x,y) 1is said to be Holder continuous in a region if
for any two points (xl,yl) and (x2,y2) in this region, there exist positive

constants K, @ such that @ £ 1 and such that |g(x1,y1) g(x2,y2)| s

KI \ﬁx 2) +(y1 YQ) I

16
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(2.2) klfﬁa*ﬂel 2 AGx,y,7,0,q) & + 2B(-=-) g + C(-=-)7 2 k0[§2+n2]

for all real ¢ and 1n and for all x,y,r,p,q such that (x,y) ¢ R + S,

-» < r,p,q < =,

The Dirichlet problem which we study is

Problem PO: Problem Po consists of finding a function u« which
has continuous derivatives up to second order in R, is continuous in R + S

and satisfies in R + S
(2.3) Lu = G(x,y,u,d0u/dx,du/dy), (x,y) € R
(2.4) u = #(x,y) » (X,y) €8

where G(---) and #(x,y) are given functions with Hélder continuous deri-
vatives of second and fourth prder respectively.

The existence of the solution of problem Po can be established
with weaker conditions on the coefficients and the functions G and @

than those indicated above. We have from Bers, John, and Schechter [1964],

Part 1I, Chapter VII, the following

THEOREM 2.1. Let equation (2.3) be uniformly elliptic and let the co-
efficients A, B, and C be Holder continuous in their five variables.
Let the function G be bounded by a constant K and the function @ have
Holder continuous first partial derivatives. Then the solution of the

Dirichlet problem for equation (2.3) exists.

In order to guarantee that the solution of problem P is unique,

0

a condition is placed on the coefficients and the function G 1in equation

(2.3) which, for some problems, involves the solution of the given problem.
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This condition is stated as follows:

Let v = v(x,y) be an arbitrary function defined on R + § which
has continuous second-order partial derivatives in .R and which is equal
to zexo on S, and let u be the solution of problem Po. A sufficient

condition that:a-solution of“prbblem'Po:is’unique, is that -

2 21 2 1 2 o}
(2.5) o%u/ox OA/dr de + 207 u/oxoy OB/dr de® + d"u/dy oc/dr de
0 0 0

1
-‘/‘ oG/or de s 0 for all (x,y) € R
0

where

1 ' 1
;/\ BA[ar de =L/‘ JA(x,y, (utev) ,0/0x (u+ev) ,9/dy (u+6v) ) /dr de
0 0

etc. 'We now prove

THEOREM 2.2. Let the coefficients A, B, and C and the function

G satisfy condition (2.5). Then the solution of problem P0 is unique.

Proof'.2 We assume that problem Po' has two distinct solutions

uy and u, and show that this assumption leads to a contradiction. Let

A(x,y,ul,aui/ax,aul/ay) be denoted by Al’ A(x,y,ue,aue/ax,aue/ay) by

A2, etc. Then, we have

(2.6) Aiaaui/ax2 + 23162u1/axay + Ciazui/ay2 = Gy, (x,y) € R
i=1,2

u, =9, (x,y) € S

i

Ry S A I SN S LTRSS A0 S AN IR I € SRS LR SR SRNOPES UL O, : o
The proof of Theorem 2.2 is given in a somewhat abbreviated form
in:Bers,.John, and Schechtet: :[1964], Part I, Chapter VII.
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By subtracting equation (2.6), i = 2, from equation (2.6), i = 1, and de-

noting u,-u, by v, we obtain
Alazv/axz + ZBlazv/Bxay + Clazvlayz + [Al-Az]azuzlax2
(2.7)

+ 208,-8,10%, /3y + [€;-C,18%,/3y% = By-6,].

The differences [Al-Az], etc. can be evaluated by means of the technique

illustrated by equation (1.6). Thus,

A=A, = A(x,y,u v, d(uytv)/3x, I(uyv)/dy) - A(x,y,u,,0u,/dx, du,/dy)

L '
f dA(x,y,u2+9v, a(u2+ev)/ax, a(u2+9v)/8y)/d9 de
0

1 1 1
v f JA/Jr de + ov/ox f O0A/dp de + ov/dy f O0A/dq de
0 0 0

where
0A/dr = 6A(x,y,u2+9v,B(u2+9v)/8x, a(ui+9v)/3y)/8r, etc.
Ve set
2 .2 [} 2 1 2 2t
D=0 uz/ax L/1 O0A/Op de + 20 uzlaxay L/\ dB/dp de + J uzlby \/\ dC/dp de
0 0 0
1 .
- u/\ oG/Jdp de
0
E =

2 a2 [t 2 1 T
a'uzlax u/\ JA/dq de + 29 uz/axayh/\ dB/dq ded-g%éﬁy /ﬁ dC/3q de
0 0 <0

1
-b/\ dG/dq de
0

and
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2 2 Pl 2 1 2 9 N1
P = 3%, /3¢ f 3/3r a0 + 20%u,/3xdy f 38/3r do + d%u, /3y f 3c/3r de
0 } 0 0

1
-u/‘ dG/Jor de
0

Equation (2.7) can now be written in the form
- 2 2 2 2 2
Lv = A, o v/ox” + 2B, 0“v/dxdy + ¢, 0“v/dy” + D dv/Ox + E dv/dy + Fv = 0

where the coefficients depend on x,y, and the assumed solutions uy and u,.
Since v = u, - u, is zero on the boundary S, we can formulate a boundary

value problem for v as follows:

(2.8) Lv = 0, (x,y) € R
(2.9) v =0, (x,y) € S.

We now make use of a maximum principle as given in Courant and Hil-
bert [1962], p. 326.

Maximum Principle: Let v satisfy equation (2.8) in R, be continu-

ous in R+ S, and let F s 0, then v 1is less than or equsal to the maxi-
mum of zero and the maximum of v on S.

By condition (2.5), F s 0. Therefore, by applying the maximum
principle to both the solution v of the prob}em given by equations (2.8)
and (2.9) and to the negative of the solution of this problem, we conclude

that both v =0 and -v s 0. Thus, v = 0, and u; = u,.

Various subsidiary conditions which insure that condition (2.5) is
satisfied are obvious from its definition. This condition is satisfied,
for instance, if the coefficients A, B, and C do not depend on u, and

9G/dr is nonnegative. If A, B, or C does depend on u, it 1s necessary
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to verify, after a solution is obtained, that condition (2.5) is satisfied.
In order to enable the error analysis of finite difference approxi-

mations to problem P0 which follows to be carried out, we need a slightly

stronger condition than condition (2.5). We let u and v be defined as

above, and require that there exist a positive number A such that

2 2 [t 2 1
d%u/ox J[\ OA/dr de + 2d ulaxayh/ﬁ OB/dr de
0 0

(2.10) 1 N
+ 3%u/dy? f 3¢/dr de - f 3G/dr de s Av for all (x,y) € R
0 0
where
v = v(x,y) = max Ig; AI, |§; Bl, g; Ci{, %; Gl .

The error bounds, which are derived in the sequel, for solutions

of finite difference approximations to problem P, depend on the partial

0
derivatives up to fourth order of the solution of the continuous problem.
We therefore assume that the solution of problem P, possesses bounded and
continuous partial derivatives up to fourth order. The boundedness and
continuity of partial derivatives of solutions of elliptic partial differ-
ential equations can be established by means of the a priori estimates of
Schauders. Sufficient conditions to insure the existence, by means of
Schauder estimates, of bounded and continuous partial derivatives up to
fourth order of the solution of problem PO are,

(i) the operator L is uniformly elliptic,

(ii) the functions A, B, C, and G have HSlder continuous second-

order partial derivatives,

3Schauder estimates are discussed in Bers, John, and Schechter [1964]
and in Courant and Hilbert [1962].



(iii)

(iv)
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the function © has Holder continuous partial derivatives
up to fourth order, and

the boundary S of R is sufficiently smooth, i.e., S con-
sists of a set of points with coordinates x,y which can
be regarded as functions of arc length s, and the fuactions
x(s), y(s) have Holder continuous derivatives of fourth

order.




CHAPTER III
FINITE DIFFERENCE OPERATORS

In this chapter, finite difference analogues of equation (2.3) are
given, We first describe a finite difference analogue of equation (2.3)
which is applicable at points in R which are not near the boundary S.
This finite difference analogue was first presented in Bramble and Hubbard
[1963] for use with linear elliptic partial differential equations. Bramble
and Hubbard [1963] proves the existence of such an approximation but does
not provide a method for obtaining it in practice. A practical method for
obtaining it is given here.

Two methods are given for formulating finite difference approxima-
tions near the boundary.

Theoretical estimates of the error in finite difference approxima-
tions to solutions of problems involving elliptic partial differential
equations are not generally obtainable unless the finite difference opera-
tors are of nonnegative type1 and are diagonally dominant. A finite differ-
ence operator Lh’ when operating on an approximate solution U(xi,yj) of

problem Po, can be written in the following form

LhU(xi,yj) = Z c(xi,yj;xm.yn)U(xm.yn)

(m,n)

where the points (xm,yn) comprigse a given set of points in R 4 5. 1If

1Exceptions to this rule are given in Bramble and Hubbard [1¢62]
and in Rockoff [1964].

a3
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U(Xi.yj;xi,yj) <o, (xi’yj) € R,
o(x»yys%y,) 2 0, (xppy ) € R+ S, (xpuyp) # (xy,y4),

and

|0(xi.yjsxi.yj)l 2 Z c(xi.yj;xm,yn).
(mon)
(m,n)¥(4,])

then Lh is said to be of nonnegative type and to be diagonally dominant.2

Elliptic partial differential operators are readily approximated
by finite difference operators with the above p;operties provided the differ-
ential operators do not contain mixed derivative terms. Finite difference
approximations, other than the one described below, which are of nonnegative
type and are diagonally dominant have been formulated for differential opera-
tors containing mixed derivative terms?; however, these approximations re-
quire that either the magnitude of the coefficient of the mixed derivative
term be severely restricted or that unequal mesh widths be used.

The method of approximating differential operators containing mixed
derivative terms which is presented below is an elaboration of a method
which is given in Bramble and Hubbard [1963]. This method consists of trans-
forming the differential operator, by means of the introduction of the direc-
tional derivative, into a form which is easily approximated by a finite dif-

ference operator with the desired properties. The transformation depends

only on the requirements that the operator L be uniformly elliptic and that

2Forsythe and Wasow [1960], p. 181.

3see Greenspan [1960], Greenspan and Jain [1964], McAllister [1964a],
and Pucci [1958].
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the coefficients be continuous functions of their argumeﬁts. The resulting

finite difference operator has an 0(h2) truncation error.
Let - (x,y) be a point in R and

let 2z denote a line through the point

(x,y) such that the angle between the line

\T

(x,y) x-

z and the x axis is equal to 1, 0 < T<T,
T # /2 (see Figure 3.1). Let u be any

function which has continuous partial deriva-

tives of second order. Then the second
directional derivative of u with respect FIGURE 3.1

to z exists and is given by

(3.1) azulazz = cos?z azu/axz + 2 sin T cos T Bzu/axay + sin’t bzu/ayz.

From equation (3.1), the mixed derivative term is given by

(3.2) 2 azu/axay = (2/sin21:)62u/az2 - cot T Bzulbxz - tan T azu/ayz.

This expression for azu/axay is substituted into equation (2.1l) to obtain

(3.3) Lu = A' bzu/ax2 + 2B Bzu/az2 + C' azu/ay2
where

A' = A(x,y,u,0u/dx,0u/dy) ~ B(~==)cot T
(3.4) ' B' = B(~-~)/8in 271

¢c' = C(«--) ~ B(-=--) tan <.

The principal result of Bramble and Hubbard [1963] relating to the

above procedure is summarized by the following theorem.
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THEOREM 3.1. Let the coefficients in equation (2.1) be continuous
functions of the indicated variables, and assume that condition (2.2) is
)

satisfied, Let tan 7 = y = ¥(x,y). Then there exist constants ko and n, 0< ka,

1$n< o, such that y(x,y) can be specified at each point in R and

ké s A', C'

(3.5) 0 s B

7 ni‘a/s
where o and B are relatively prime integers and
lsao, Bs .

A proof of this theorem is sketched in Bramble and Hubbard [1963].
A complete proof is given in the Appendix of this paper.

The angle T 1is specified at each point in R such that conditions
(3.5) are satisfied. A method for doing this in practical applications is
described later in this ch#pter.

The set of mesh points, at which numerical approximations are cal-
culated, are the intersections of twé families of straight lines called
mesh lines. These two families of mesh lines are given by X = ih, 1 = 0,
1, 2, «e., I and vy = jh, § =0, *1, 12, ,..,fJ where I and J are
positive integers such that (I-l)h s Xs Ih and Jh 2 Y.

With each mesh point (xi,yj) € R, there is associated a pair of
points, either (x£+ Bh, vyt ch) and (xi- Bh, yy- och) or (xi- ph, yj+ ah)
and (xi+ Bh, yy- Ch). Since o and B are relatively prime integers,
these points will be mesh points (though not necessarily mesh points in R).
These mesh points.are called the diagonal neighbors of the me;h point

(xi,yj). The distance between the mesh point (xi,yj) and either of its
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diagonal neighbors is given by

(3.6) | kg y = i B,

The four mesh points (xi+h.yj), (xi-h,yj), (xi,yj+h), and (xi.yj-h) are
called the rectangular neighbors of the mesh point (xi,yj). The diagonal
neighbors plus the recti:ngular neighbors are called the neighborhood
N(xi,yj) of the point (xi,yj).

A mesh point (xi,yj) € R 1is called a regular mesh point if each
of the mesh points in N(xi,yj) is in R. All mesh points in R that
are not regular mesh points are called irregular. The disjoint sets of
regular and irregular mesh points in R are denoted by Rh and Rb re-
spectively,

For each mesh point (xi,yj) € R, let the portion of the line =z
which connects the point (xi,yj) with its diagonal neighbors be denoted
by zi,j' The points on the boundary S which are at the intersections
of the lines =z and the mesh lines x

i,] i

mesh points (see Figure 3.2). The set of boundary mesh points is denoted

and yj are called boundary

by RS' We assume that the mesh width

h 1is sufficiently small that, for each

T3 Eg
mesh point (xi,yj) € R, at least one \%’J 5/)Lr
AN

of the mesh points on each line Xi» V. NI

J
Yys and zi,j which are in N(xi,yj) is R
also in R + S. yj-l xr

X X X, .,

The finite difference approxima- i-1 i i+l

tion to the solution of problem Po is 0 - Boundary mesh points
defined in R only at the mesh points FIGURE 3.2

(xi,yj) and is denoted by U(xi,yj) =

i,j
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At regular mesh points, we use the usual central difference quotients:

AUy = Wy, Uy, 200
Vli,g T Payym Pia /0
(3.7)
(Ui.j)x = A+ Win,j
= Wi,57 Via1,p2/%0
and
(Ui,j)xx - <Av)in,_j
(3.8)
2
= Ug4,57 20, 5% Vg, /0
Similarly,
U,y = G+ D045
(3.9)
= Wy, 507 Yg, 500/
Wy, Pyy = @O0y,
(3.10) )
" O ga7 20,57 gy
and
Uy, 052 = B0y 5
(3.11)

2

= (U 2U /K™,

1g, 4o~ 21,57 Virp,i-a

The finite difference operator Lh is defined at regular mesh

points by the following finite difference equation.
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LU = A'(xi,yj,U

1,3’
(3.12)
+ 2B'(--- '(==- U
(===)@W),U; 4 + C'(---) W) Uy
The differences between the approximating difference quotients de-

fined above and the corresponding exact derivatives can be estimated by

means of Taylor's Theorem with remainder. We have

'

©
%N

[ ad
-

(3.13)  Qu/dx); 4 - @ u; = hz[(a3u/ax3)i*e’j]/6, 0

and

|
s
"
.

(3.14) (Bzu/bxz)i’j - (£§nyi,j = h2[<a“u/ax“)i*¢,i]/12, 0 s

Similar relationships hold between the derivatives and difference quotients
with respect to y and z.

Two alternate finite difference operators are defined at irregular
bl and Lb2'
The finite difference operator L

mesh points, They are denoted by L
bl is an adaptation of a linear
interpolation scheme originally given in Collatz [1933]. Consider the
configuration of mesh points given in Figure 3.3a where 1t 1is assumed to
have been determined as indicated. The operator Lb1 is defined at the
point (xi,yj) by

(3.15) Lbl.Ui,j =[7\/()\+1)]Ui+1’j + [1/(7\+1)]Up’q - Ui.j

where Ah 1is the Euclidean distance between the point (xi,yj) and a

boundary mesh point (xp.yq).
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For the configuration given in Figure 3.3b, T = 37/4, and a diagonal

neighbor of the point (xi,yj) is not in R + S. For this configuration,

(3.16) Ly Uy, 5 = G L I [1/(?\+l)]Up.q - Uy g

The general case for which a diagonal neighbor is not in R + S is illustra-
ted by Figure 3.4, For this configuration, 74 i = /B, and the diagonal
4

neighbor ) £ R+ 8; therefore, (xi.yj) is an irregular mesh point.

(CRPYD FR
Then there exists a point (xi- Ae cos T, yj- Ak gin 1) = (xi-ks’ yi-%a) € Rs.

In this case,

(3.17) Lblui,j = [A/(MLD)]U + [1/(1)]U U

14Q, §+6 1-AB,j-Aa ~ "i,i°
A generalization of either (3.15), (3.16), or (3.17) is applicable

to any mesh point in Rb' In case more than one mesh point in N(xi,yj) is

not in R + S, there is a choice regarding the precise definition of Lbl

e el e

\l‘>:\r\

(XeYa) I (Xi,Yj)

(a) S (b)
Figure 3.3
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at (xi.yj). Insofar as the considerations here are concerned, the choice
is arbitrary.

The operator L, utilizes formal approximations to the partia}
derivatives. Consider an irregular mesh point (xi,yj) and assume that
the point (xi-l’yj> ¢ R, {.e., the configuration given in Figure 3.3a.

Then the term Ju/dx in equation (3.3) is approximated at the point (xi,yj)

by

y
®is 8, +a)

e

s )/

(xi,yj) x—

=

(x{-Ak cos T, y;-Ak sin <)
Figure 3.4

(3.18) (aulax)i.j = (U .)x = [1/(ML)h][U

i,] 141,j Ui-?\,j]

and the term Bzu/ax2 by

(3.19) (Bzulbxz)i.j = (U )

o
- (2/h)[(1/(?\+1))Ui+1’j- (1/?\)Ui’j+ (1/7‘(7‘"'1))":1-7\,3]'

Similar expressions are used when one or more of the mesh points (xi+1,yj),

(xi’yj+1)’ (xi'yj-l) do not belong to R + S,



Next, assume that (xi,yj) is the irregular mest point given in
Figure 3.3b. 1In this.case, the term azulazz is approximated by

. 2 2 ~
(3.20) (d°u/dz )i,j = (Ui,j)

42
= @M/, - N

o (1/7\(}\';'1) )Ui"7\,j+7\] ’

and for the configuration given in Figure 3.4, azulazz is approximated

by

(3.21) (azulazz)i’j =Wy )y,

= (2/k3)[ (1/ U,

lTﬁnj+a- (l/k)ui’j

+ (WA o0 5 o]

Approximations such as those given by equations (3.18)-(3.21) are
used to replace the partial derivatives in L to form the operator Lb2’

The differences between the finite difference quotients defined
above and the corresponding exact derivatives are given below.

The for operator Lbl and the mesh poiﬁt configurations given in.

Figure 3.3a,b, we have respectively

ulx;,y,) - (M L) Julxy ) yy) - [1/(h+1)]u(xp.yq)
(3.22)
2 2 5.2 2,52
=[Ah"/2(M1) TN u/3x7), g it (3%u/ax )i+¢,j]’ 0se, Psl,

and




(3.23)

- WY DIAR/D g QRardey g Ll

" 0sp, psV2

For the configuration given in Figure 3.4, we have

u(xi.yj) = (M) ]u -[1/(MD)]u

1+or, J4B. 1=2B, j-Act

(C.24)

=P 20mINRPurd2?) o+ @Puraeh) o T,

0s0spB,0=9=a.

For the operator Ibz and the mesh point configuration given in

Figure 3.3a,

| @u/d), = [1/hO+1)I[ulrg,g03,) = uley 3]
(3.25)

= (/204D %y (- /)y ]
and
@Purady, | -a{[l/(mnu(xm.yj) + LA Gy 0y )
(3.26)

. [1/A]u(xi,y1j§vh2-=-[h/3(A+1)][a3u/ax3)i+¢’j- A2 (3%u/3x%)

0§¢,9§1.

For the mesh point configuration given in Figure 3.3b,

i-O,j]’
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2 .2
(3%u/3z di,j " [1/(N+1)JU(xi+1.yj_1) - [I/R(K+1)JU(xp.yq)

(3.21) 4 [L/AJutey,y)I/% = -[VZ b/30wIL@%u/d2) g 5 g

2,.3 2
'?\(a u/az )i-¢,j+9]’ 0§¢’.9§ﬁ)
and a similar expression holds for the difference between azulazz and the
difference quotient given by equation (3.21).

We now describe a procedure by which the angle T can be chosen at
each mesh point in R, We assume that an iterative method is used to solve

the finite difference analogue of problem P, and that the finite difference

0]
approximation to equation (2.3) is linearized in some manner so that the
coefficients can be evaluated at each mesh point prior to each successive
iteration.

We first require that the value of the angle T corresponding to a
mesh point (xi,yj) be chogen such that tan 7 has the same sign as the

coefficient B This insures that B! is nonnegative. If

i,3° 1,5

Ap g - IBi’jI > 0, and
(3.28)
Ci,j - |Bi,jl > o’

7 18 chosen to be either w/4 or 3w/4 depending on whether B is

1,5
positive or negative respectively.

If condition (3.28) is not satisfied, we resort to the following
procedure., We know from Theorem 3.1 that a value of 7 = 7(x,y) exists

such that condition (3.5) is satisfied at each mesh point. From condition

(3.5), we have for such a value of 17




and

or

(3.29)

and

(3.30)

' .
Values of Ai?j

functions 6f vy = tan v for the case B

35

' = - B t >0
A1, 78,3 " Byg oot T

c! ,.=¢C - B tant >0
1,3 1,3~ P13 o0

1f B, . >0

/ By, 3 1,

<tant<¢C, .,/

B1,178,3 1,

/ <tan T <B, ./

B < 0.
B3 1,3 if

©4,3 AL 1,3

and' Ci j are indicated schematically in Figure 3.5 as
t . ! ]

For the case B

> 0. <o
i,] L,3 7

the curves in Figure 3.5 are reflected about y = 0. From condition (3.5),

we know that the

curves in Figure 3.5 intersect at a point such that Ai 3
T 9

Ci i z k6 > 0. Thérefore, if condition (3.28) is not satisfied, A 3 can
9 : ]

be chosen from

A c

1,5 " Bi,3/¥1,5 7 C1,5 7 B,y Vi,

-\
A= dB,
A—A

C%
I

/B/A C/B>

Y ——

Figure 3.5
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or

(3.31) y[ A, + (C° 2 . 4p2 yl/2y,

= 2By Loy g ALyt (g 2O 5h T AT P

1,1 j

tLccording to Theorem 3.1 can be chosen as the ratio of rela-

? Yi,j
tively prime integers @ and PB. The procedure outlined above will not,

in general, result in such a choice. However, the value of Y; j obtained
)

from equation (3.31) can be approximated as closely as desired by a ratio

of relatively prime integers.

We now show that the coefficients Ai j? Ci It and B! in the
’ 9

i,]
transformed operator (3.3) are bounded. From condition (2.2), the coeffi-

cients A.

i3 Ci,j’ and lBi,jl are bounded by a constant k,. Since

1

1 1
Bi,jYi,j is nonnegative, Ai,j and Ci,j are bounded by the same constant

B3

pose condition (3.28) is not satisfied; then two cases, corresponding to

kl. If condition (3.28) is satisfied, is also bounded by kl' Sup-

lYi jl <1 and IYi jl > 1 respectively, must be considered. Assume
s 2

!Yi,jl > 1, then

v =
B B1

i3 [sin 2 T

+J

- Bi,j/2 sin T cos T

2
= Bi’j(1+6 )/2%

where dh 1is the distance between the mesh line x = xi and the intersec-
tion between the mesh line y = Vi1 and the line zg j (see Figure 3.6).
9

Note that 0 < 3< 1. From conditions (3.29) and (3.30),

vy, 3l <€, 5/ 1B 4




or

Therefore,

Thus,

(3.32)

1/8<c, /|

WULWIE

' 2
By, < |31,5|(1+5 )01,3/2 |B

< (1+89)¢c, /2.

i,4

]
Bi,j < kl .

9]
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If |A| <1, a similar analysis gives the same result, i.e., that condition

(3.32) is satisfied.

Sh

B AV




CHAPTER IV
THE FINITE DIFFERENCE PROBLEMS

In order to obtain an approximate solution Ui,j of problem PO’
the function ¢ = 7i,j is first evaluated at each mesh point in Rh+ Rb'
Next, the operator L 1is transformed into the form given by equation
(3.3). The transformed operator is then replaced by the finite differ-
ence operator Lh at each mesh point in Rh' At the mesh points in Rb’
the approximate solution Ui j is required to satisfy one of the follow-

?
ing equations:
LY, = O

or

Bpgly, 5 = GOy 0y oP0g, 100y, 5

where Dx and Dy denote applicable finite difference approximations to
the partial derivatives with respect to x and y respectively. The

value of U(x,y) at each point in R_ is taken to be equal to @(x,y).

S
We consider the following distinct discrete problems:

Problem P.: Problem P

1 1 consists of finding a function Ui

»J
which satisfies

(4'1) LhUi,j = G(xi’yj’Ui,j. $+v)xui’j’(A+v)

in’j)’ (xi)yj) € Rh
(4.2)  Ly,U; ;=0 » (x4554) € Ry

(_4-3) U(x,y) = B(x,y) y (x,y) € RS'
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Problem P,: For problem P2, we require

2
(4'4) Lhui.j bt G(xiiyj Oﬂi,jlm'*'v)xui’j’(A-*-v)yui.J)i (xi’yj) € Rh
(4.5) LbazUi'j - G(xi.yj.Ui,j.Din’j.Din.j) ’ (xi’yj) € R‘b
(4.6) U(x,y) = ¢(xoY) ‘ y» (x,y) € RS'

Because the systems of equations comprising problems P1 and P2 are
nonlinear, some iterative procedure is usually required to solve them. It
is not our purpose to discuss such procedures in detail in this paper. We
merely note some of the types of iterative methods which are used.

Usually, a method for solving a system of nonlinear algebraic equa-
tions involves a linearization of the system of equations in such a way that
successive solutions of the linearized system converges to the solution of
the nonlinear system. Frequently the form of the nonlinearity can be ex-
pltoited to this end in a simple way for a particular problem. An example
of the use of such a procedure for a continuous problem is given in Ablow

and Perry [1959] where it is shown that the problem given by

(4.7) Au = buZ , (x,y) € R,

(4.8) u=9 » (x,y) €358,

where b 1s a nonnegative constant and @ 1is a given nonnegative function

can be solved by forming successive iterants according to

Au(n+1) - bu(“+1)u(n) (x;y) € R

W) L g ,» (x,y) € S.
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Hbere, p(n) and u(n+1) denote: the nth and n+18t iterants respectively.
A discretized version of this problem and of the iteration scheme is pre-
sented in McAllister [1964c].

There are also several methods for solving general systems of non-
linear algebraic equations. One of these, the so-called 'natural' method
consists of requiring the current iterant to be the solution of the system
of linear equations obtained by evaluating the coefficients which depend on
U and other terms which contribute nonlinearities at the previous iterant
(see, for instance, Young and Wheeler [1964]).

Another method which can be used to solve systems of nonlinear al-
gebraic equations consists of a generalization of Newton's method. If we

write the system of equations in vector form as

(4.9) F(U) = 0
RN
and denote by A(U) = (ai j) the matrix with elements
s
a 4" bFi(U)/an

then successive iterants for Newton's method are obtained from
-1
- - -d d (. . Y

The question of finding sufficient conditions for the convergence.of
the above procedure was settled in Kantorovich [1948]. The result of Kantoro-
vich can be stated as follows:

Let J, B, C, and D ' be constants where

J = BCD,
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and assume the following conditions are satisfied:
- -
(1) for U= U(O), the matrix K(G(O)) has an inverse and an esti-

mate for its norm1 is known

1a@®y1°Y = s,

—_
(ii) the vector U(o) is a sufficiently close approximation to the

solution of (4.9) that
IA@ @17t FGO) < c,

(1ii) 1in the region defined by inequality (4.10) below, the components
-
of the vector F(U) are twice continuously differentiable with respect to

-
the components of U and satisfy

N
N ”
? |0 Fi/aujaukl £D,i=1,2, ..., N,

and

(iv) the constant J satisfies the inequality
J<1/2 .

Then the system of equations (4.9) has a solution ﬁ* which is

located in the sphere

Hﬁ - ﬁ(o)u s [Fl-(1-23)1/2]/{}c.
(n)

-
Kantorovich also shows the convergence of the sequence U to be almost

quadratic; for large n,

e - 3/ - 5] <

for any nonnegative p less than 2.

N
lThe matrix norm used by Kantorovich is HVH = max 2 |v where

|
151sN §=1 1d

V = (v, .) is an N x N matrix.
i,]



CHAPTER V

THE ERROR EQUATIONS

The difference between the solution u o) Problem P0 and the solu-

tion U of a finite difference analogue of problem PO is defined as the
error E, i.e.,
.l 3 = ) .
(5.1) Ul,j 49 + Ei,j
By replacing U by its equivalent E + u in the finite
i,j 1,3 1,j
difference equations comprising problems P, and P,, finite difference

1 2

equations are obtained for the error.
In order to simplify the notation, we define the following abbre-

viations for n s 4!

M > (M) = nth partial derivative of u with respect to x
2

evaluated at a point (xtiﬁ’yj)’ 0ses1l,

N> (N) = nth partial derivative of u with respect to vy

evaluated at a point (xi’yjie)’ 0s®esl, and

an > (Qn)i j = nth partial derivative of u with respect to z
k]
evaluated at a point (xtﬁn’yjiﬁ)’ 0sws B,

0 = € £ o, where 75 j = O, B.
’

We consider first the finite difference equation (4.1) at mesh

points in Rh
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A' (xi’yj ’ (ui,j+Ei,j)’ (A+V)x(ui,j+Ei,j)’ (A+V)y(ui,j-"Ei’j))[ ([&V)K(ul,j-'—El{?]

(5.2)

OB LAW), Gy 4By DT+ G =[OV oy By ] = Gees)

1]

The functions A', B', C', and G are expanded by using the defini-

tion of a definite integral. This is illustrated below for the fuanction A':
] o D
A (xiOyj’(ui’j+Ei’j)’ (AW)X(ui,j-l-Ei,j)’ (A‘—V)y(ui,j+ni j))

1
(5.3) = A'(x; SN j,(a+v) S (AHY) u, L)+ Ei’jl;[ Arde:li,j

x i,j] Y i,]

(ATV) Ei,_][f Adejl .+(A'I'V)E’j|:/ lei’-]

where, with 0/dr denoting differentiation with respect to the third argu-

ment of A,
L .1
- { ..-
[fo Arde]i,j fo aA(xi,yj,(ui’j+9 » OH0) (u; OE; ),
Q&Hv)y(ui’j+9Ei’j))/8r de,
and similar definitions apply to the terms

s e [, 30

By making use of relationships such as equation (3.13), we have the

following additional expansion.
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A' (xi’yj ’ui,j ’ (A+V)xui,j’ (A‘*'V)yui’j)

(5.4) = A (xi,yj.ui’j,(BuIBX)i’j + hz(Ms)i’j/S, (au/ay)i,j “+ h2(N3)i’j/6)

' 2 [
=Ai,j 'rh(b13)i’jl:fo 9:|i’ /U'\h(N3)ij[f e:li’j/(:

where

Ai,j - A'(xi,yj,ui’j,(au/ax)i’j,(au/By)i’j),

1 1
[;/0 Xpdé]i,j - L/; aA'(xi,yj,ui’j,(au/ax)i’j + GhZ(M3)i’j/6,

(@u/dy),  + en(Ny), 1/6)/3p de,

l “
A de .
[L q ]i’J

is defined in a similar manner.

and

We use expansions such as (5.3) and (5.4) and the fact that the dif-
ference operator is linear with respect to second-order differences to write

equation (5.2) in the following form:

ai,j(AV)in + 2b (AW E

Y O E;

1,3 1,5

(3.5) T OB T e OB Y e gBe s T B

- Ai,j(azu/6£5i’j - ZB:!L':I(bzt.t/azz)i’j - Ci,j(bzu/ayz)i’j + Gi,j

where

1,3 1,3



b = B'(-==), ¢

i,j = C'(-~--),

e 5o ]+ L o
L elfood - [l

- Ut + 5 o]
sl - U

= LR [ ]+ o 509 e n.ﬂ
[ assfengs ] - [, 5

and
1
8,y " M )ij i j/12 + [(AV) u j:I[}MS)i,j/O Apde
. L
* gy fo R0, 576 + @y, 24, 410
lv\ 1-‘\
+ [(AV)zui,j_J [(M3)i,jj; dee + (N3)i,j 0 Bqdeili’j/3
1
+ W), G /12 4 [cav) u ][(MB)i’jfo C_do

1 -1
+ (1\13)1’j o che:li’jlé - [(M3)i,j/o Gpde + (1\13)i’j

45
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The last four terms in‘equation (5.5) sum to zero because of equa-
tions (2.3) and (3.3). The finite difference equation for the error in

the solutions of problems P, and P2 at mesh points in R is then

1

8, BBy, g ¥ By JOVIE g ey JODE,
(5.6)

+ di,jcﬁ+V0in,j + ei’ Q&FV)yEi’ +

i 3V B, 58,5 T B,y

which we write also as

(5.7) LhEi,j - 8i,j°

Since the coefficients a, b, and ¢ depend on E, this is a nonlinear
equation.

By using previously designated bounds and equations (3.13), (3.1l4),
we find that the céefficients and the nonhomogeneous term in equation (5.6)

are bounded as follows:

1
ko s ai,j’ c =k

0 sb k
1,5 %
la, .| sk, ([F+ h2H, /12] + 203+ k2, /12] + [N+ h2F /12] + 1)
i,] 2++72 4 2 4 2 4
where k2 is a bound on the first partial derivatives of the functions

A, B, C, and G. For h less than any designated value, say unity, a

finite constant k3 can be chosen such that

Idi.jl s k.
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Similarly, the coefficient is bounded in absolute value by k3

ei’J

for h less than unity. For the nonhomogeneous term, we have
2 = = . = 2= - 2= - 2= '
Igi,jl £ h° (2k,[Mg+ N1[M+ b, /12 + 2Qu+ n°Q,/3 + N, + hN,/12 + 1]
+ k(M + 2Q,+ N,1) /12,
For h less than unity, a finite constant. k4 can be chosen such that

Igi,jl < hzka.

Now, consider the coefficient fi i
»

fi i is bounded for finite hj; however, we require also that fi i be non-
] »

Each term in the coefficient

positive, i.e,, that

r 1 Frl

i,_\[o Ardei]i’j [(AV)xui’;] + 2i_fo Brde]i’j [(Av)zui’j]
fl' ‘ l" :] [ 1

+ C_de (V) u, .| - f G d{] =0 .
I:o r ]i,j'_ y 1.3 o  Ji,j

Iﬁequality (5.8) is established by the use of condition (2.10). 3y substi-

(5.8)

tuting for aeu/axay in condition (2.10) from equation (3.2), we obtain

2 2 [l > 2 [1
0%u/dx U/‘ (0A/dr - cot T OB/dr)de + 2 d“u/dz J[ (cos 21 3B/dr)de
0 0

1 1
+ aau/aye U[‘ (oC/dr - tan T OB/dr)de - k/\ oG/dr de s 4v
0 0

From equations (3.4), this inequality can be written as
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1 1
32u/3x2 f 34" /3r do + 2 3%u/d2? f 38'/3r do
0 0

(5.9
5 5 1 1
+ 0%u/dy f oc'/or de - f 0G/dr de s Av
0 0
where
A' = A'(x,y, utev, O(ut+6v)¥ox, O(utev)/dy)
etc.

Inequality (5.8) can be written in the following form:

2 2
2/ + h2M4/12)1’j [f

1
A de] + 2<a2u/az2 + k2Q4/12)1 .
o ¥ i,j »J

(5.10) l: f s de:I + (3%u/3y® + nN,/12) l: f " d{l
o T 1,3 TUULY [ Jo T4,

where

[Kr] (" [aAv (%, uH6E, (AHV)_(u+6E) (A—PV)y(u-i-GE))/Br]i’j

etc. In order to be able to compare (5.10) with (5.9), we use relationships
1
such as equation (3.13) to expand the quantities [f

A de], etc. as follows:
o f




I,

1 1 :
{:f A de:] = ’f OA' (x,y,u+0E,du/dx + 6(AMV) _E,
o F 11,3 0 x
du/d d %, ' lx.
(5.11) u/dy + e(AHV) E)/or dGJ + [h f f d9d¢] /6
y i, o Jo TP i,3

o [ rge ], 5
+ |h°N e d
| 3 Jg Jo T4 1,3

where
@rp]i,j - [a.’EA'(x,y,u-l-OE, du/dx + 8(A+v) E + 0h2M3/6, du/dy + Q(AW)yE

.
+ Ph N3/6)ara;>]i’j

and [A ]

. 1s defined similarly.
rq'i,]

We define a differentiable function v on R + S which is equal to

Ei j at the mesh points (xi,yj) and which has derivatives given by

(dv/ox)

1,3 (A+V)in.,j and

(5.12)

(ov/ay) (&4V) yE 1,

i,] 3

By using (5.11) and (5.12), inequality (5.10) can be written as

1 1 1
IFaeu/a,x&’ f 3 /3r a0 + 2 3%u/d22 f 38'/3r do + 32u/dy> f 3¢ /or de
. 0 0 0

1 1 101
- 0G/dr de—! §_-h2 {M4 f A_do + 2 d3°u/3x° E‘I3 f f A_ dedp
0 21,3 o~ ovo TP

+ N A dedp| +417Q f B_do + 4 d%u/3z" |M f f B__dedd
3 ovo rq 4 0 r 3 ovo XP
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71 N 1_ 32, /3.2 101 ’
+ N B deds +Ndee+2 u/dy Mfdeed
3 oJYo Tl ] 4 o % 3 oJo IP

101 7 1 16 101 ; 2
+ N fcaedo -Mff d9d¢-foGd9d 2 ..
3JpJo- ¥ | 3Jgdg rP 3JgJo ¥4 1,1

All quantities in the curly bracket are bounded; therefore, there exists a

constant k5 such that

1 1
(5.13) [aau/axa f A'/3r d + 2 d%ufdzt f 3B'/3r de
0 0 |

4 324 /302 L, 1 2
u/dy dc'/or de - oG/dr de £ hk,.
' 0 0 i,]

If v(xi,yj) is nonzexo, the validity of (5.13) is established at

1/2

the mesh point (xi,yj) for h < (AN/ks) by inequality (5.9), i.e.,

) 1is zero, £ is zero, and thus non-

is nonpositive. If v(x
i,3

t.i 1273
positive, for all h.

We consider next the finite difference equation for the error in the
solution of problem P2 at irregular mesh points. This equation can take
several forms depending on which of the six neighbors of an irregular mesh
point (xi,yj) are not in R + S. Because of symmetry, it is only neces-
sary to consider an irregular mesh point for which one rectangular neighbor
and one diagonal neighbor are not in R + s ﬁo illustrate the several pos-
sibilities.

Suppose for a mesh poiﬁt (xi,yj) that Yi,j = 3 and that both
the diagonal neighbor (xi-l’yj-3) and the rectangular neighbor (xi-l’yj)
are not in R + S (see Figure 5.1); then (xi,yj) is an irregular mesh

point. Equation (4.5) for u, 3 is
]
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= ' -
LbEUi,j A (xi,yJ,Ui j,n U, j,D U )2[U1+1 j/(>~1+1) Ui’j/k1
+ Uy ’j/x o} +1)]/h + 2B (=) [0y 14/ OptD)
(5.14)  -u A, +U p01-30, 1A (0 +1) 1/50
+ ' ---)[U, .. -20, U, , ,1/n2
. i,3+1 i,] 191'1
= G‘(---) .
L - %, )
where"Dx and Dy denote applicable
difference approximations to 9/dx and
- ' A h ,
B/By respectively. The finite difference -~ (th,)
equation for the error is obtained from }T
\ . ~
equation (5.14) by the same prpcedure that \ 7{”
is used for regular mesh points. For the \1/
irregular mesh point considered above, the
finite‘difference equation for the error /
has the form S
Figure 5.1
2

M V PR . 2
2b1,j[31+1,j+3/'(}‘2+1) - Ei,’j/)»2 + Ei_}\a’j_%a/xz()\2+1)]/5h
(5.15)

+ cFEi’j+1- 2B, *E; o 1]/h +d, .J B4, Bi- A ,13/ G*Dh

°1, j[ 1, 34175 - 1]/Zh * LR T By

In equation (5.15), the coefficients and nonhomogeneous term are given by the

same expressions as for a regular mesh point but where the difference quotients
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are those used in equation (5.14) rather than the symmetric difference quo-
tients previously used. Also, the nonhomogeneous term éi,j is proportional
to h rather than hz. Let k6 be a constant such that gi’j s hk6 for
(xi,yj) an irregular mesh point.

The coefficients are bounded in the same way as for regular mesh

points. In order to assure that is nonpositive at points where

£
i,]
v(xi,yj) is nonzero, it is necessary to specify that h be less than or

is a constant which corresponds to k. for

equal to Q&v/k7) where k 5

7
regular mesh points.
We denote the finite difference operator for the error in the solu-

tion of problem P, at irregular mesh paints by

2

LoaBi, 5 ™ 84,5

The error equation corresponding to equation (4.2) takes a some-
what different form. For the mesh point configuration given in Figure

3.5a, we have from equations (3.15) and (4.2):

Lbl(ui,j+Ei,j) = A(ui+1’j+Ei+1’j)/(A+1) + (up’d+Ep’q)/(k+1)

T g, 5t T O

Since E = 0, we have
Psq

By =Ogy g+ Mgy g +u YWD -
which by the use of equation (3.22) can be written as

(5.16) E

£3 = OBy o+ MM, o o+ (M) o (1/2)/ ().

For the general case, the rightmost term in equation (5,16) will be denoted

by gi,j.



We define the finite difference operator fbl by

LpEy, = AE, /O - E,

where

(xi’yj) € Rb and (xm’yn) € Rh'

The error equations derived above can be used together with zero
boundary values to formulate boundary value problems for the error. The
boundary value problems for the error functions associated with problems

Pl and P2 ares

Problem 51:

(5.17) GBiy ey g deg ] 3 b0 Gy e Ry

(5.18) LBy, = 8y, 40 leh,yl s hkg, (x3074) € Ry

(5.19) EGt,y) = 0 . () € Ry

Problem P

(5.20) LE; =gy lggyl s hk,, (07 € R

(5.21) szEi,j - éi’j, \éi"j} s Wkgs (%453, € Ry
E(x,y) = 0 » (x,y) €R
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CHAPTER VI
LINEAR DIFFERENCE OPERATORS

In order to derive error bounds for the solutions of problems P1
and P2, it is necessary to first establish some properties of linear dif-
ference operators.

Let a, b, ¢y, dy, e, and £ be functions of x and y only which

satisfy the following conditions for (xi,yj) a mesh point in R+S.

0 < KO s ai,j’ ci,j < K1

0= bi,j s Kl

(6.1)
baggls leg 5l 2 5

0s £, .
i,]
where Ko and Kl are:finite constants. Also, let
(6.2) h, =z ZKO/Kl.
Let A j be an arbitrary function defined at the mesh points in
t4

Rh + Rb + Rs. At the mesh points in Rh’ we define the finite difference

operator Lh by

(6.3) I-‘hvi,j - ai,j(AV)xvi’j + Zbi’j(AV)zvi’j + ci’j(AV)yvi’j

+d; .V + v + £, .
£, j Oy g ey (O Vy o £y vy

At the mesh points in Rb’ finite difference operators ibl and
ib2 are defined. The operator ibl is the same as the operator Lb
54

1



55

given by equations (3.15) and (3.16). The operator £b2 has the same form
as the operator ih but utilizes difference quotients such as those given
by equations (3.17)-(3.21) rather than the symmetric difference quotients

used above,
Just as the maximum of a function v, continuous on R+S, for which

Lv20 in R 1is less than or equal ﬁo the maximum of zero and the maximum

of v on S, we prove

LEMMA 6.1, Let vy j be an arbitrary function defined at the mesh
]

points in Rh + Rb + Rs such that

thi,j 20, (xi,yj) € R »
Lbzvi,jg o, (xi,yj) € Rb'
If the mesh width h 18 less than hl, then

vi,j S max (O,ma:igv)

for all (xi,yj) € Rh + Rb.

Proof: Define *1 j by
’

ihvi,j - wi’j’ (xi’yj) € Rh’
(6.4) }
~ LgaYi, 5 = Vi,50 Fpo¥y) € Res

then

Vi, ® O

At the mesh points (xi,yj) € Rh’ equations (6.4) can be written as
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Vi3 ™ e, Ve, TR 3, VL s T G, o/, Vi, Sa

(6:5)  + Gyzg s oy, Vigp, sea t Ca, g /he, Ve g0 T G g/t Ve g0

2
= (h /Hi’j)wi’j’

where

- 2(ay #b, /(@MBD + ey - h’e, L /2),

Hi,3 i

bien,g = (g, ythdg g/ vy g = (ag 4hdy /2D

- 2, .2 - 2 2
bitp, g = 1,y @B Rigg gug T Py y R

b ge1n™ (g, gheg 37200 g gog = (eg gohey 4/2)e

’

| At the mesh points (xi,yj) € Rb’ the function Vi,j is given by
equations similar to (6.5). These equations involve values of ; at one
" or more boundary mesh paints, and values of the coefficients corresponding
to these mesh points depend on which of the mesh points in N(xi,yj) are
not in R + S. By way @f illustration, the value of the functiom vi,j is

given below for the irregular mesh point illustrated in Figure 5.1l.

Vi3 Gaan, /e, Ve, e PV 303 e, s e, g0

(6.6) MW WL IDAFT VR I Wl Gy, 5411, 501841, 3

2 .
+ (“i’j"]-/pi’j)vi,j-l - (h /Hi’j)\?i’j

where
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- 2(a /R /5A, + ¢

2
by, /M2 oq,5 B E, /2

Hi,1 i,]

Bipl,q = (28 gthdy O/, gy o= 26y /5L,
biop,g = (28 g=BAd, /A A+, TRV = 2b; /5N, (A\H),

By, T (Cy gthey g /2 vy gy = (ey ymhey 4/2).

Equation (6.6) 1s easily generalized to apply to any mesh point in R .

For h < hl’ the coefficients in both equations (6.5) and (6.6)
satisfy
0 <y joM
and
Ei:; “m,n s1
(m,n)

where the subscripts (m,n) take on all values of the subscripts included
in equation (6.5) and (6.6) except (i,j).

Now, let M = max vi,j’ (xi,yj) € Rh + Rb + RS. If 0O<M and

Vi}j = M at a point (xi,yj) € Rh + Rb, then Voon ™ M at each point

?

(xm,yn) € Rh + Rb + Rs which is associated with (xi,yj) by the appropriate

equation (6.5) or (6.6). If one of the points (xm,yn) is a point in Rs,

the lemma is proved for the point (xi,yj). Otherwise, the same argument
applies to - each of the neighbors of the original point until a point which

is associated with a point in Rs is reached.

1f vi,j is nonpositive for all (xi,yj) € R » then Von is non~

positive for all (xm,yn) in Rh+ Rb' Therefore,
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v s max (0, max v).

i,3
Rg

We consider next the boundary value problem given by

(607) thi’j = ti.j b} (xi’yj) € Rh

(6.8) v(x,y) = B(x,y) , (x,¥) € Rg

where ti j and ¢i j are given functions, and all mesh points in R are
? 9

assumed to be regular mesh points. We prove

LEMMA 6.2, Let h < hl; then the boundary value problem given by

equations (6.7) and (6.8) has a unique solution.

Proof: We first show that if a solution of the boundary value prob-

lem exists, it is unique. Suppose ] i and vi j are two solutions of
. b} ?

the given problem. Then vh = (v, .~ v! .,) is a solution of the problem
i,] i,j 1,3

LV, gm0 (xpayp) e Ry

vi,j = 0, ‘xi,yj) € Rs.

By Lemma 6.1, any solution of this problem is bounded above by zero. Simi-.

larly, by considering the function -v; 3 it is proved that any solution
’ \
is bounded below by zero. Therefore, v;’j = 0, and Ve, T vi’j.
The determination of A 3 at any point (xi,yj) requires the solu-
’

tion of a set of 1inegr algebraic equations with as many'equations as unknowns.
The uniqueness of the solution implies that the determinant of the matrix

of coefficients is nonzero, i.e., the matrix of coefficients is nonsingular.
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In this case, as is well known, the set of equations has one and only one

solution.1

Next, we establish the existence of a bound on the solution of the:
boundary value problem given by equations (6.7) and (6.8).

Let o, and the function be defined By

1 PiLi

_ 2 2,.2.1/2
(6.9) o; = [1+(h +h 4K+ + "] %) /2K ] /[1-h1<1/21<0], h < hy
and
R S | -
(6'10) pi,j Ul o-l’ i' 0’ 1’ 2) ? I
We first establish some properties of the function by means

Pi,3
of the following lemmas.

LEMMA 6.3. Let h < hl; then 1f R contains only regular mesh
points, the second difference quotient with respect to 2z of the function

Pi,j is nonpositive.

Proof: Let (xi,yj) be a regular mesh point and let 7} j = T a/B.
’

The second difference quotient with respect to z of the function is

P13
given by

(A7) g 5 = W), (7-0]) = (&) 0]

= -[c'::-*ﬁ- 20-51L + il"B]/k2 = -0-;..[0-? -2+ ciB]/ke.

ISee, for instance, Milne [1949], p. 8.



60

For h< hl’ g

1 =2 1. Consider the function

_ _ -B
F = F(Ul) = c? 2 + Oy s gz 1.

For oy = 1, F= 0, and

aF/do, = B>l - oP-Ly,

For all B, oy z1,

dF/do‘1 2z 0;

therefore,

Fez 0.

always, and the value (ANOzpi 3 is nonpositive.
?

LEMMA 6.4. Let h < hl; then if R contains only regular mesh

points,

ihpi,j s -1,

Proof: By direct substitution of (6.10), we have

i i i I 1
-ai,j(AV)xcl - ebi,j 1" di’j(Aﬁv)xol + fi’j(o1 - o).

By condition (6.1) and Lemma 6.3,

z i i
ani,j s -ai,j(éxoxal - di,j(Aﬁv)xcl
s -oila,  to-2oiI/® + 8 (oy-07 ") /6]

- -1,,.2 -1
g -K, (o, -2+, y/h™ + Kl(cl-cl )y/2h .
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It is verified by direct calculation that o, as defined by equation (6.9)

is a solution of
(6.11) .-KO(O‘I-EWII)/he +X,(0,-071) /2 = -1
which proves the lemma.

Next, we prove

THEOREM 6.1. Assume that R contains only regular mesh points, and

let 1 j be the solution of the boundary value problem given by equations
?

(6.7) and (6.8). Then, for h < hl’

max lvi,jl S py j max |ti,jl + m;x Iai,jl'

Ry Ry s

Proof:. Let

| + max |9

Rs

= t
U,3 7 Py, TOF 4,5
h

From condition 6.1 and Lemma 6.4,

Lpdg,y = max leg gliyey 4 +max 18, ,lf,
h S

£ -max It

i,jl'

Also,
. 2 ma
qi’J me Iﬁi’jl
S
at mesh points in Rs. Hence
V1,5 7 V1,37 4,3
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is nonpositive on RS and

b, 7 BaL,g 7 e,y
is nonnegative for (xi,yj) € Rh. Therefore, by Lemma 6.1, wi,j is non-

positive in Rh’ and

A'4

i,jl'

§,0 % 94,3 7 Py p e ey gl b max |

S

A similar argument holds when v is replaced by -v » and we obtain

1,] 1,3

max |v, .| s p, (max |t, | +max |@, .|

which was to be proved.

COROLLARY’1l. Let Hy be given by

Hy = [Kl + (K§+4K0)1/2]/2K0

then there exists an h2 such that for h < h2, the solution of the problem
given by equations (6.7) and (6.8) is bounded as follows:

HyX
max ‘vi,jl Se max lti,jl + max |9

|.
i,]
Ry Ry Rg

Proof: By virtue of Theorem 6.1, we need only show that there exists

an h. <h such that for h<h

2 1 2

i.e., that

o] -9 Te ;) o221, 124 z0.
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Since ci 2 1, it {s sufficient to show that

K. X
cris.el + 1.

Now,

1/h

= @M%

I _ , 1/hIh
oy = (o )

and
(al/h) = (1+[h2+h(4K +K2+h2)1/2IﬁRR Y/ (1-hK, /2K j 1/
1 0 1 3 1770

1/h 1/h
- [1+h(4x<o+x§)1/ 2/rexo + o(h2)] [1 + R /2K, + o(h2)]

(6.12) (ci/h) = [1+hp1]1/h + (1/h)[1+hu1](1/h)-1 o) + ...

As h tends to zero, the first term on the right side of (6.12) tends to

s |

e and the sum of the successive terms to zero. Therefore, there exists

an h, < h, such that for h < h2,

2 1
u, X
GI -l=se 1 s
and by Theorem 6.1,
|sel 16
s t + .
“‘;: v,y S e “‘;: leg, 5 “‘;: 3!

We now return to the case of a general region R, i.e., a region

containing both regular and irregular mesh points.

LEMMA 6.5. Let ] j ‘be an arbitrary function defined at the mesh
S 22 , .

points in Rh + Rb + Rs such that
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Lh vi,j z 0 ’ (xi’yj) € Rh
Lgvi,y =0 (v ey
v(x,y) = B(x,y),(x{y) € Ry .

Then, for h < hl’

m
=

(a) v s max (0, max v).(xi,yj)

i,] h
RyHRg
and
(b) vi’i = max (0, m;x v), (xi,yj) € Rh + Rb.

)

Proof: Part (a) of this lemma is proved by applying Lemma 6.1 di-
rectly. Part (b) is proved by the same argument that was used to prove
Lemma 6.1. At a mesh point (xi,yj) € Rh + Rb’ v:‘_’j is given as a weighted
average with positive weights whose sum does not exceed unity of neighboring

values v .
m,n

Consider next the boundary value problem giveh by

T - ! : .
(6.14) Lopve,5 = %,5 ° (£7y;) € Ry
(6.15) v(x,y) = B(x,y) , (x,¥) € Rg
where ¢t and t) are glven functions. Then, we have
i,] i,]

LEMMA 6.6. For h < hl, the boundary value problem given by

equations (6.13)-(6.15) has a unique solution.




65

Proof: This lemma {s proved by the same argument that was used to

prove Lemma 6.2,

Next, we prove

THEQREM 6.2. lLet vy j be the solution of the boundary value prob-
’
lem given by equations (6.13)-(6.15) where @H(x,y) =0, (x,y) € RS. For
h < h2
HiX
(6.16) max ‘vi,jl £ 2 max |t; jl + 2 max Iti,j"

R Ry By Rp

Proof: From Lemma 6.6, we know that the solution v is unique.

i,}]
We apply Theorem 6.1 to vi,j’ (xi,yj) € Rh where the mesh points in Rb

and those mesh points in R_, which are adjacent to mesh points in R, are

s h

considered as boundary mesh points. Thus, for h < h2,

HyX
6.17) max 'Vi | = e
R ’j

max It1 jl + max |v
?
h Rh R

i.Jl'

Now, let (xi,y ) be an arbitrary mesh point in Rb’ From the definition

3
of ibl’ vi,j is given by an equation of the form

- - 1 \
= vp’q/(k+1) + kvm,n/(k+1) t! ., 0<AK1,

Yi,j 1,3

where (xp,yq) is a mesh point in Rs and (xm,yn) is a mesh point in

Rh. Since vp q =0 and XA/ (Ml) s 1/2, we have
. 3

(6.18) max |v

%

| £ 1/2 max |v, j‘ + max |t! ,]|.

i,] s i,]
Ry R,
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By substituting successively for max v in (6.17) from (6.18) and for

%

in (6.18) from (6.17), we obtain (6.16).

1 jl

max lv

Ry

i.jl

Next, we establish a bound on the solution of the boundary value

problem given by

(6.19) L, Vig ™ ti,j > (xi,yj) € R

(6.20) LoV, g " Ei’j , (xi,yj) € R

(6.21) iy ™ oi,j s (xi,yj) € Rg
We have

LEMMA 6.7. For h < hl’ the solution of the boundary value problem

given by equations (6.19)-(6.21) exists and is unique.

Proof: This lemma is proved by the same argument that is used to

prove Lemma 6.2.

Let h3, Ops and the function ﬁi,j be defined by
(6.22) hy = min(hg,h3)
where
(6.23) h! = K;[1 - (2/3)1/"]/4K
: 3 0 1’
and
| 1 I 2 2
6.24) hy = &, [(3/2)Y 117201 Hekgt 4 + () 113,
(6.25) o, = [1+n /K + h(2K,+ 4K + h )1/2/K /01 - 2hK1/K0],
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i=0,1,2, ..., I; 0 A <1,

and
- ~ 1 &2 N
(6.26) pi,j Oy = 05 5
Here, X = 0 except when ﬁi j is evaluated at an irregular mesh point.
t}
We prove
LEMMA 6.8. For h< h,,
o5 z1
and
o) 5 3/2.
Proof: From equations (6.22) and (6.23)
hos (1 - @3 "4k
< KO/ZKI.
Therefore,
op z 1.

From equations (6.22) and (6.24)

or

h s Ko[(3/2)1/n-1]/2 {1+ F2K0+ 4K§ + (h:;)

2]1/2}

h + h2K+ 4K> + (hé)a] < xo[(3/2)1/9-1]/2.

Obviously, h 1s less than unity; thus,

2 2
1+h /KO + h[2K0+ 4-1<1

+ 0212 5 320 - - Me,
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and from equation (6.23)

2 2 2.1/2 1/
1+h /Ko + h[2K0+ 41(1 + h"] /Ko s (3/2) [1 - 2K1h/KO].

Thus, from equation (6.25),

og s 3/2.

LEMMA 6.9. For h < h%’ the second difference quotient with respect

to z of the function Py j 1s nonpositive.
’

Proof: The proof of this lemma for regular mesh points is the same
as the proof of Lemma 6.3.

Let (xi,yj) be an irregular mesh point and let i = ta/B. We
must consider two cases, i.e., either (but not both) of the diagonal neigh-
bors (xi-Bh, yj + oh) or (xi+ Bh, yj + oh) might not be in R + S (since
Sl’j is independent of y, the sign of Oh is immaterial).

If the diagonal neighbor (xi- Bh, Y5 +oh) ¢ R + S, the second

difference quotient with respect to 2z of ﬁi j is given by (see Figure
?

5.1)
(6.27) -[oéfﬁ/(x+1) - aé/k + cé'xﬁﬁk(x+1)]/k2

where Ak, 0 < A <1, is the distance between the mesh point (xi,yj) and

. We have

. the point of intersection of § .and zi j
b}

(6.28) [oé+ﬁ/(l+1) - a;/l + cé'xvx(x+1)]/k2 - cé[kcg - (A1) + c;kﬁ]/kgx(x+1).

The coefficient of the square bracket on the right-hand side of (6.28) is non-

negative; thus, we need only show that
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Ry
F=)ob - (W) + 0}

is nonnegative. Let

b = (1), 0 5 ¢ 5 1/2;

then
-\
F = M1+c) - (M1) + (1+€)
2 ¥ = AM1)e2[1 - (M2)e/3]/2
and ¥ 1is nonnegative for € £ 1/2. By Lemma 6.7, qg g 3/2 for h< h3;

therefore, (6.27) is nonpositive.

Now, suppose the point (xi+ﬁh, Y +oh) ¢ R+ S. Then, we must

show that
(6 .29) - [a;*"ﬁ/x(xﬂ) - oy + cr;-B/(RH)]/ke éa'o’
or that |
F =ch - Q4 +00, 0<A <1, 0,2 1,

is nonnegative. Again, let og =14+¢e, 02£e=1/2; then
' l _.1
F = (L4)" - Q1) + M(14€)

(6.30) Fz¥ = (14r-2e)e20/2.

Flyeg = 0

f‘lhl z 0.

We need only show that F 1is positive for some pair of values of A and
€ in the interval 0 <A< 1, 0 £€ £ 1/2 and that F has no zeros in

this interval to complete the proof that F 1is nonnegative throughout the
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interval. Consider

Floge=/e,17a = 164 >0

Suppose F has a zero in the interval of interest, then from (6.30),
l14+X-2=0
A=2e -1,

but this relationship is not satisfied at any point in the interval, and
we conclude that ¥ is nonnegative in the interval. Thus, (6.29) is non-

positive. This completes the proof of the lemma.

LEMMA 6.10. Let (xi,yj) be a mesh point in R, + R For h<h

h™ b’ 3

ihﬁi,j 2 '1’ (xi’yj) € Rh
and

T .
Lb2pi,j s 21, (xi,yj) € Rb'

Proof: The proof of this lemma for mesh points in Rh is the same

and 31 3 are substituted for h, and
9’

as the proof of Lemma 6.4 if h 1

3

pi,j respectively.

Suppose (xi,yj) is a mesh point in Rb' As in the case of regular
mesh points, we can omit the difference quotient with respect to 2z by virtue
of condition (6.1) and Lemma 6.9. Then, there are two cases that must be
considered, i.e., either (but'not both) of the rectangular neighbors (xi-h,yj)
or (xi+h,yj) might not be in R + S,

First, we assume that the mesh point (xi-h,yj) ¢ R +S. For this

case
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(6.31) Loby 4 = -2a ,lo it/ a1) - oha + oS Ib°
Lo ot/ + (oh-0b), 0 <A <1

s ot {ax Doy (1453 1/BPA ) + K, oy /m )

Next, we show that

(6.32) 2[>\02-(1+)\)+c?]/>\()\+1) z [02-2-0;1]/2.
Let o, = 1+€e,0s¢€ s 1/2, then
Mo, - (1R) + a;" = M(LHe) - (1R + ()
z e2[1 - (MR2)e/3]/2.
Also,
02-2-cé1=1+e-2+(1+€)'1
S 62,
and we require only that
1~ (A+2)e/3 2z 1/2

which is true for 0 <A< 1, 0 s € s 1/2. This establishes (6.32). Now,

we show that

lo,- 031/ (1) 5 [o,- o3t

This reduces to showing that
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which is true for all l,aa in 0<AK1, 0y 2 1. From these results and

(6.31), we have for the case when (xi-h,yj) ¢ R +S,

1 2 -1
(6.33) K ]/2n° + Kl[ae- o, 1/h.

0[02- 2 +

LyaPy,5 5 - 02

The quantity o, 1s a solution of

2

-1 2 -1 .
-Ko(ca- 2 + oy y/2h~ + Kl(cé' oy y/h = -1 ;

thus, the lemma is proved for the irregular mesh point being considered.
Now, suppose (x£+h,yj) ¢ R +S. We must show that inequality (6.33)

is satisfied for this configuration or that

(6.34) -2a [Gi+l

3l N ARt VICES D

INQH) - o\ a’g‘l/()d-n]/h2 - 4y o}

-1 2 -1
S -Ko[cz- 2+ o, 1/2n° + K1[°2’ oy 1/n.
First, we show that

(6.35) 2[0‘2 - (19 + xo;]/x(xﬂ) z [0, 2+ cr;I]/z.

Let 0, =1+¢,0s5e¢s 1/2. ‘Then,

) ¥ (1) (1) FX 6 os 14 2 0.

This expression is grexster than or equal to
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L+ (1A)e + (LAe/2 + (LIN-1)€2/6 - (L43) (L) + A= x(A:n:1)62/4
and we need only show that
1/2 + (x-1)e/3 20,

which is true for all A,e in 0<A<1, 0 =€ s l/2.

In order to complete the proof of (6.34), we must also show that

A -1 -1
[02 - o, 1/ (A+1) s gym Oy
or that
A -1
o5 + Aca s lca + 0p

which is true for all A,c in 0 <A<, 0y z 1.
This completes the proof of the lemma for all possible mesh point

configurations.

The desired bound on the solution of the boundary value problem

given by equations (6.19)-(6.21) is given by

THEOREM 6.3. Let v be the solution of the boundary value prob-

i,j
lem given by equations (6.19)-(6.21). For h < h3,

s P t .
max Ivi,jl S Py, max {lti,jl’ Ity jll + max Ini,jl

RptRy Ry ’ Rs

Proof: This theorem is proved in the same way that Theorem 6.1 is

proved. Use is made of Lemma 6.10, and other substitutibns are obvious.
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COROLLARY 1. Let Hy be defined by

1/2

]/Ko;

2
o = [21(14- 2(1<1 + K0/2)

then there exists an h4 such that for h < h4, the solution of the problem

given by equations (6.19)~(6.21) is bounded as follows:

roX -
max |vi jI Se? max {lti j‘{ |t:i jl} + max |9
b} ? b}
Bn*®p R *®p Rs

i,j|°

Proof: The proof of this corollary is the same as the proof of

Corollary 1 to Theorem 6.1.




CHAPTER VII
ERROR BOUNDS FOR SOLUTIONS OF FINITE DIFFERENCE PROBLEMS

In this chapter, we use the results of Chapter VI to show that the

boundary value problems for the error functions associated with problems

-

P1 and P2, i.e., problems P1

to hp, pzl. Let W1 denote the set of functions defined at the mesh

points in Rh + Rb + R

and §2 have solutions which are proportional

3 such that if w € Wl, then

HeX

(7.1) max | = 4n° max{e © K, kg

Ry Ry

vy g

wix,y) =0, (x,y9) € Rg

where

- 12 1/2 ot
(7.2) ke = [ki + ((kl) + 4k6) ]/2Lo
and
(7.3) ki = max [kl,k3].

Equation (5.17) which is satisfied by the function E at points

i,]

of R for problem P, is a nonlinear algebraic equation; we linearize it

h

by replacing

1

Ei j where it occurs in the arguments of the coefficients
’

by a given function w € wl. Equation (5.17) is rewritten in the form

Mh'i,j = gi,j’ (xi’y:j) € Rh

where

75
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Mhsisj - aisj(éwoxsi’j * 2bisj(éwozsi’j * ci’j(éﬁoysi’j

+ +
di’j(éﬂﬁﬁxsi’ + ei,j(éﬁﬁﬁys

3 1,5 7 51,550,

and where the arguments of a b and c¢, ., are
& i,] i’j’ i,j

(xi’yj’ (ui,j+‘wi,j)’ (Cﬂﬁﬁx(ui’j+wi’j), (Aﬁﬁoy(ui,j+wi,j))’

and E, . has been replaced b
i,] nree Y %,3

We also denote the difference operator Lb1 by Mbl'

everywhere except in the coefficients.

Now, consider the boundary value problem ?1 given by

(7.4) Mys; 5 =8 5 (X¥p) € Ry

(7.5) M155,5= 81,5 » (Xs¥y) € Ry

(7.6) 85, =0 » (x;,¥,) €Rg.
We have

LEMMA 7.1. For h < h?, the solution s of problem §1 exists

and is in the set Wl.

Proof: Since problem §1 is a linear difference equation problem,
the results of Chapter VI can be applied to it. For h < h2, we have from
Lemma 6.6 that problem §1 has a unique solution s, and from Theorem 6.2,

p'lx '
max lsi,jl 5 2 = max Igi,jl + 2 max |81’j|-

Rh+Rb
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From this and equations (5.17) and (5.18),

., X
1
max Isi,jl s 2e h2k4 + 2h2k8

| RptRy,

or
X

n
|§h24max (elk,k }.

max |s

i)
RptRy

8

Also, s(x,y) =0, (x,y) € R Hence

so

s e WI.

THEOREM 7.1. Let h < hy,,

with problem Pl has a solution E = g* where 8% € wl. Moreover, problem

then problem ?1 for the error associated

31 has no solution that is not in W,.

Proof: In order to prove this theorem, we consider the problem ?1

as a transformation T:
Tw = s.

By Lemma 7.1, for h < h2, the transformation T takes a function w from
the set wl into a function s which is also in the set Wl. The set Wl
is a closed n-cell}; and the transformation T 1is continuous; therefore,

we can apply the Brouwer Fixed Point Theorem to the transformation T. The

lA closed n-cell is defined as follows (see Lefschetz [1949], p. 30).
let G" be an n-dimensional Euclidean space. Let the coordinates of a
point in 6" be denoted by Xy s i=1,2, 3, ..., n. A closed n-cell is
defined as the image of any continuous one-to-one mapping of the set
¥ x.
i=1xi s 1,
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The Brouwer Fixed Point Theorem states that2 every continuous transforma-
tion of a closed n-cell into itself has a fixed point.

Thus, there exists a function &% € W. such that

1

Tg* = g%,

and we conclude that problem ?1 for the error associated with problem P1

has a solution E = s%* yhere s* ¢ Wl.

Now, suppose problem Fl has a solution 8 where s 1is not in Wl.

This implies that 8 <can be used to linearize the difference equation

(5.17) for problem 31 and that s is the solution of the linearized prob-

lem. However, Theorem 6.2 applies to the linearized problem and states

that, for h < h2, any solution of this problem is bounded as follows:

2, X
1’J.| g 2h°[e k, +k8].

max |3

RyRp

Since any solution of problem ?1 also has zero boundary values, we conclude

thact s e W1 and thus have a contradiction. Therefore, problem ?1 has no

solution that 1is not in Wl.

Next, we consider problem ¥é. Let W2 denote the set of functions

defined at the mesh points in Rh + Rb + Rs such that 1{f w € W2, then

.7 max

B "R

HoX
lwi,j' s he © max [hk4,k6]

(7.8) w(x,y) =0, (x,y) € Ry

5
“ref-chetz  [1949], p. 117.
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where
(7.9) = [2Kk! +20(k!)° + k' /2) /2] /k
ko 1 eV 0 0°
Equations (5.20) and (5.21) which are satisfied by Ei j at
9
points of Rh + Rb for problem 32 are both nonlinear algebraic equations.

-

We linearize them in the manner given above for problem Pl by using a given

function w € W2. Problem P, consists of the linearized problem ?2 and is

2
given by

{7.10) M Sy,y = 8,5 » (xi,yj) € R,
(7.11) Moo 83,5 = By,3 » (¥ € Ry
(7.12) s(x,y) =0  , (x,y) €R

where Mh and Mb2 denote the linearized finite difference operators Lh
and Lb2 respectively.

Then, we have

LEMMA 7.2. For h < h,, the solution s of problem 52 exists and

is in the set Wa.

Proof: Lemma 6.7 and Corollary 1 to Theorem 6.3 apply to problem

?2 and state that, for h < h4, problem §2 has a unique solution s and

X -
max |si j| g e max {Igi,j|’ Igi,j|]°

Ryt
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From this and equations (5.20) and (5.21),

B X

2
max lsi,jl < he max {hk4,k6}.

B By

Since also, s(x,y) =0, (x,y) € RS’ s € w2 .

THEOREM 7.2. Let h < h4, then problem P2 for the error associated
with problem P2 has a solution E = s* where s% ¢ Wz. Moreover, problem

Fé has no solution which is not in W2.

Proof: This theorem is proved by the same argument that is used

to prove Theorem 7.1 by using Theorem 6.3 and Lemma 7.2 instead of Theorem

6.2 and Lemma 7.1.

From Theorems 7.1 and 7.2, we conclude that the error functions
associated with problems P1 and P2 are bounded by quantities which are pro-

portional to h2 and h respectively. In Chapter IX, we show that the

error for problem P2 is actually bounded by a quantity which is proportional

to h2.




CHAPTER VIIL
EXISTENCE AND UNIQUENESS

The existence of solutions of the discrete analogues, problems Pl
and P2, of the given continuous problem, prmoblem Po, can be deduced from
the existence of a solution of the continuous problem and the existence
of solutions of problems P1 and P2. However, this reasoning depends on
the assumption that the continuous problem satisfies all of the conditions
given in Chapter II which insures the existence of bounded partial deriva-
tives of fourth order of the solution of the continuous problem. Solutions
of problems Pl and P2 can be shown to exist with fewer conditions than this.
For sufficiently small mesh width, the same conditions which are used to

establish the existence of the solution of problem P, are sufficient to

0

establish the existence of solutions of problems Pl and P2.

We prove

THEOREM 8.1. Let equation (2.3) be uniformly elliptic and let the
coefficients A, B, and C be H6lder continuous in their five variables.
Let the function G be bounded by a constant K, and let the function @
have H8lder continuous first partial derivatives. Then, for h < min {hz’ha}’

the solutions of problems P1 and P2 exist.

Proof: First, we note that, by Theorem 2.1, the hypotheses of this
theorem are sufficient to guarantee the existence of a solution of problem
P0 which has continuous second-order partial derivatives in R. Thus, the
transformation (3.3) exists, and it makes sense to talk about problems Pl

and P2'
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In order to establish the existence of solutions of problems P1
and P2, we use a technique similar to that which was used to establish

the existence of gsolutions of problems P, and B..

1 2
Let Wé denote the set of functions defined at the mesh points
in Rh + R.b + RS such that if w ¢ W3, then

max lwi j| 2 Ke + max 1,]

Ry#R, Rs

w(x,y) = P(x,y), (x,y) € RS

where

1/2

wy = ey + Geordied )t 2172

Equation (4.1), problem P., is linearized by replacing Ui where
b}

1’ 3
it occurs in the arguments of the functions A, B, C, and G by a given
function w € W3. By Lemma 6.6, the linearized problem has a unique solu-

tion. This problem is considered as a transformation Tl which takes a

function w from the closed n~cell W3 into a function U which, by

Theorem 6.2, is also in W3. "Since this transformation is also continuous,

the Brouwer Fixed Point Theorem can be applied; thas, the transformation
Tl has a fixed point in W3, which is a solution of problem Pl.
The existence of a solution of problem P2 is established in the

same manner as for problem P The solution of problem P, is in the closed

1’ 2

n-cell W4 where a function w € W4 if

HoX
max Iwi,jl s Ke + max l¢i,jl

R R, Rg
w(x,y) = 8(x,y), (x,5) € Ry

and where
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by = (24203 k6/2)1/2]/k6 :

Use is made of Lemma 6.7 and Corollary 1 to Theorem 6.3 to show that solu-

tions of the linearized problem exist and are in W,.

4
The solutions of problems P1 and P2 can be gshown to be unique by a
method similar to that used to show that the solution of problem PO is

unique, We prove next

THEOREM 8.2. Let equation (2.3) be uniformly elliptic, let the
functions A, B, C, and G have HSlder continuous first partial deriva-
tives, and assume that condition (2.10) is satisfied. I1f v(x,y) is non-

1/2

zero for any (x,y) € R, let h < min [Q&v/ks) s Q&v/k7), hl}' Otherwise,

let h< hl' Then the solutions of problems P1 and P2 are unique,

Proof: We consider first problem Pl' Suppose problem P1 has two
solutions U and U. Let V denote the difference U - U and let

[ 1 1
A’(xi,yj,Ui’j,Q&FV)in’j,Q&FV)in’j) be denoted by Ai,j’A (xi’yj’ui,j’

CA+V)in’j,Q&FV)in’j) by A, ., etc. Then at the mesh points in Rh’

1,]
we have
(8.1) A:'L’j(AV)in’j+ ZB:!L’j(AV)zUi’j-i- Ci.j‘AV)yui,j - (;i,j
(8.2) Ai,j(AV)in’j-t- Zﬁi’j(AV)zUi’j-i- c:i.ch)y'Ui’j = Gi.j.

We subtract equation (8.2) from equation (8.1) to obtain
ALy EVVe, 5 7 BBy, 09,0y 5+ OOV
(8.3) + (Ai’j- Ai,j)c‘“’)x‘-’i,j + Z(Bi,j‘ §i.j)(AV)zl.Ii’j

+ (¢} Ei’j)(av)yﬁi,j - (G, ,-G, ).

sj- i,] i,j
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The differences [A éi j], and [G, ,- G, ,]
]

c! .-

By Al DB 5By 4] 104 1,37 %1,

can be evaluated by means of equation (5.3) with uy j and Ei j replaced
? 3

by Ui,j and vi,j respectively.

We have, for example,

- Al(xi,yj,l-li’j,(A+V)x1-.li’j,(A+V)yl-Ii,j)
(8.4) - pl_ 1
- Vi,j L ArdOJ i + (A-i-V) V 1,3 |;[ Apde] .
1-
+ (A—i-V) V i, [f Aqde:li’j.
By substituting expressions such as (8.4) for the differences [Ai i Ai j],
]
etc. in equation (8.3) and rearranging, we obtain
Ai’jcﬂv)xvi’j + ZBi,jcﬂv)zVi’ + C' OSV) V j Q&¥V) V 1,3
(8.5)
TEL OV T E gyt O
where
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1. . 1
Ei’j - QAV)in’j {/; Aqdé}i,j + qQNV)zui’j [;/; Bqde]i,j
- '1- 1-
+ (AV) U u/~ C de - u/\ G dé} s
”’j[oq]m [oq 1,3
- l1- - 1-
Fi’j - va)x 1,3 {L/; Ardé}i’j + 20&v>zui’j [;/; Brdeji’j
- - 1-
+ (Avl)yui’j [crde]i’j - [fo crde] Y .

The coefficients in equation (8.5) are bounded in the same way that the co-
efficients in the error equation, Chapter V, are bounded. Also, from

Chapter V, Fi j is nonpositive for h < st/ks)l/z.
?

At the mesh points in Rb’ U and U satisfy equations of the form

(8.6) Lblui,j - [7\/(?\+1)]Um’n + [1/(k+1)]up’q - Ui,j

and

(8.7) Lblﬁi’j - [A/(k+1)]ﬁh’n + [1/(>\+1)]1‘1p’q - ﬁi’j

where 0 <A1, (xi,yj) is a mesh point in Rb, (xm,yn) is a mesh point

in Rh, and (xp,yq) is a point in Rs.
We subtract equation (8.7) from equation (8.6), note that Up q -
»
ﬁp,q’ to obtain
(8.8) [7\/(?\+1),]Vm'n - vi,j = 0,
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We now formulate a boundary value problem for V as follows:
Al ! c! . + D V) V
I e N I N A T I WAL
o =)
FEL OV P E YT S peyy) e Ry

[?\/(7\+1)]Vm’n - Vi’j = 0 H (xi’y:l) € Rb

V(x,y) = 0, (x,y) € Rg

By Lemma 6.5 the function V 18 bounded above by zero for h < hl' Simi-
larly, the function =~V 1is bounded above by zero. Therefore, V m 0, and
U= 0.

The uniqueness of the solution of problem P2 is established in the

same manner as for problem Pl. Equation (8.5) applies at mesh points in

Rh for problem P_,, and an equation of the same form as equation (8.5)

2
but using asymmetric difference quotients applies. at the mesh points in
Rb’ The solution of the finite difference problem for V corresponding

to problem P2 is shown to be identically zero by the use of Lemma 6.1.




CHAPTER IX
IMPROVEMENT OF ERROR BOUNDS

In Chapter VII,, solutions of problems Fl and ﬁé for the error in

problems P1 and P2 respectively are shown to exist and to be bounded by
quantities which are proportional to hP. The exponent p 1s found to be

equal to two for problem P, and to be not less than one for probiem 32.

1
We now show that the solution of problem fé

tity which is proportional to h2 in all cases. The methods used here

is actually bounded by a quan-

are similar to methods presented in Bers [1953] and in Bramble and Hubbard
[1963].

The §olution of problem fé is a fixed point of the transformation
consisting of the linear boundary value problem‘ﬁz. Thus, we accomplish
our objective by showing that the solution s of problem f2 is bounded
by a quantity which is proportional to h2.

We denote the finite difference operators Mh and sz (see equa-

tions (7.10), (7.11)), when applied at a generél mesh point in Rh+ Rb’ by

My. In this notation, problem ?2 is given by

9.1) Mosi,j = gi,j . (xi,yj) € Rh
9.2) ;Mosi’j‘= éi,j , (xi,yj) € Rb,
(9.3) l s(x,y) =0 . (xi,yj) € RS.
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The operator MO is written in the following form1

-4 Mosi:j - 211 Ui!j;m:nsmnn
(m,n)

where the subscripts (m,n) take on all values corresponding to points

in Rh+ Rb+ Rs. For a given mesh point (xi,yj), the coefficients

-2
Gi,j;m,n are equal respectively to h times the coefficients “m,n

which are defined in Lemma 6.l; otherwise, o, .. is equal to zero.
i,jsm,n
The coefficients o satisfy the following conditions for h < h, =
i,jsm,n 5
N ! '
kO/k1

%5 ,951,3 = °

(9.5) -Gi,jém;n z 0, (i,3) ¥ (m,n)

g 2 a
l i:j§isj| Ej i,jsm,n
(m,n)
(m,n)#(1,1)
We now define a function G which is a discrete analogue
i,jsm,n
of a Green's function for problem P,. The function G is the
2 i,jsm,n
solution of
—
.6 = - .
(9.6) Z °1,j,m,nGm,n;p,q S(x,_,yi,xp,yq), (xi.yj) € R +R

(m,n)

1This notation is also used in Chapter III in the definition of
nonnegative difference operators.




(9°7) Gi,_‘];P,q = s(xi’yj;xp'yq)’ (xi’y:,) € Rs

where 8 4is the Kronecker delta.

Next, we establish some properties of the function G

i,jsm,n’

LEMMA 9.1. For fixed h < h_, the function G exists and
—_—— 5 i,j3m,n

is unique.

Proof: If it exists, the function G is unique. For,

i,jm,n
assume that Gi,j;m,n and - G;,j;m,n are two functions satisfying equa-
.6 7). = G! - G .
tions (9.6) and (9.7) Let Gi,j;m,n Gi,j;m,n Gi,j;m,n Then,
Gi,j;m,n satisfies
MOGi,j;m,n = 0, (xi,yj) € Rh+ Rb,
®t,53mn = O Gy € R
and by Lemma 6.1, E;i’j;m’n £ 0. Similarly, -éi’j;m’n S 0; therefore,
G = 0.
i,jim,n
Since G is the solution of a system of linear algebraic
i,j5m,n

equations with an equal number of equations and unknowns, uniqueness implies

existence.

LEMMA 9.2. Let h <h and let

5 si,j be an arbitrary function

defined on Rh+ Rb+ RS. Then at each mesh point (xi,yj) € Rh+ Rb+ RS’
si,j is given by
(9.8 si,j - ;z Gi,j;m,n[-Mosm,n] + }; Gi,m;m,nsm,n'

(x o3 JER, R (x sy JeRg




90

Proof: Let LA j represent the right side of (9.8). Suppose
td

(xi,yj) € RS. Then the first term on the right side of (9.8) is zero

and wi,j is simply si,j' Mow, let (xi,yj) € Rh+ Rb; then we consider

Mo¥s,5 = Z 71,1m,0"m,n
(xm,yn) eRh-!-Rb-{-Rs

= o ' G -M. s
Z i,jsm,n Z m,n;p,q [ Op,q]

(x_ sy )R R, R (xp,yq) R, Ry

+ G s
m,n3p,q P,q

€R

= oM ) o G
osi’j }z i,jsm,n m,n3i,j
(s V) R 1R R

- Z' Mos ZO’. . o, . G
07psq 4 i,9;m,aisjsm,n mynsp,q
(xp,yq) eRh+Rb S (xm,yh)1r=',R_h+Rb+RS

(xp.yq)#(xi,yj)

+ Z s Z‘ o G
P> i,jsm,n m,n;3p,q

q )
(g yq) Rg (x 2y ) R R Ry

= MO'i,j

Thus,

MO[si,j- wi,j] =0 , (xi’yj) € Rh+ Rb

[8 wi,j] = 0 ’ (xi’yj) € RS

1,31



91
and by Lemma 6.1,
si,j = wi,j , (xi,yj) € Rh+ Rb+ Rsa

LEMMA 9.3. For h <« hS’ the function G is nonnegative.

i,j;m,n

Proof: Assume first that (xm,yn) € Rh+ Rb and consider the func-

tion -G which satisfies
i,jsm,n
MO[-Gi,j;m,n] = G(Xi!y:l ;xm’yn) E 0’ (xi’yj) € Rh+ Rbl
-Gi’j;m’n = 0 ’ (xi’yj) € Rso

Now?, let (xm’yn) € RS‘ then
MO['Gi,j;m,n] = 0 . (xi,yj) € Rh+ Rb’
-Gi’j;mxn B -S(xi’yj;xm’yn)’ (xiﬁyj) € Rs.

By Lemma 6.1, -Gi,j;m,n £ 0 for both cases above.

LEMMA 9.4. For h < min [h3,h4], the sum

AKX
}z G S e 2
i,j;m,n

(xm,yn)eRh+Rb
where

1/2

hp = [2k) + 2((ki)2 + k528
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Proof: Recall the function 31 j which is defined in Chapter VI.
H

By Lemma 9.2 is given by

? pi’j

-

Pi,3 7 Z Gi,j‘;m,n[-MOPm,n] + Z €4, 3;5m,n0Pm,n’
(xm,yn)€Rh+Rb (xm,yn)eRs
By Lemma 6.10, Mopi,j
X

o
Se 2 for h<h,. From this and Lemma 9.3, we have

4
rAX
e 2 2 };

(xm’yn R Ry,

S -1, and by Corollary 1 to Theorem 6.3, 0 = Bi ;
’

G .
i,jsm,n

We now prove the principal result of this chapter.

THEOREM 9.1. Let h <min (h;}, 1 =3, 4, 5. Then the solution
of problem ?2 is bounded by a quantity which is proportional to the square

of the mesh width.

Proof: From Lemma 9.2, the solution s of problem ?2 is

i,]
given at the mesh points (xi,yj) € Rh+ Rb by

5-9) ®1,1 Z Gi,j;m,n[-MOSm,n] * Z Gi.j;m,n['MOSm,n]'
(= ¥o) Ry (x 2y ) Ry

For points (xm,yn) € Rh’ we have from equations (9.1) and (5.20),

IMOSi,jl 'lgi,jl

s hPk

4 .
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Thus, from Lemma 9.4,

Z €4, 1;m,nl M5y, 5]

(xm.yn)eRh
£ ma s Z G
i,jsm,n
(x >y )e i
n Rh (xm,yn)eRh
RAX
< h2k4e 2

Next, we consider the term

(9.11) }: Gi,j;m,n[-MOSm,n]'
(xm,yn)eRb

Let ﬁb be any subset of the mesh points in Rb' We show first that for

any mesh point (xi,yj) € Rh+ Rb

1
= .
(9.12) min _ -7 o n:p,q = E: i.J;m,n
(x ,y )e [ R (x »y )eR
m’’n Rb (xp,yq)eRh-i-Rb n Rb
Let the function sg j be defined by
?

1, (xi.yj) € R+ Ry
(9.13) s, . = '

1,3 0, (x ) € RS

i’yj

By Lemma 9.2;, for (xi,yj) € Rh+ Rb’
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(9.14) l= E: Gi,j;m,n[-MOsm,n]'
(xm’yn)eRh+Rb

From conditions (9.5),

(9.15) -Mbsm,n z 0, (xm,yn) € Rh + Rb'

From Lemma 9.3, equation (9.14), and inequality (9.15), we have

(9.16) 1z }: Gi,j;m,n{-Mbsm,n] .
(xm’yn)eﬁb

Inequality (9.12) follows from Lemma 9.3 and inequalities (9.15) and (9.16).

Now let the subset Rb consist of all mesh points (xm,yn) € Rb
such that at least one rectangular neighbor of (xm,yn) is not in R + S,
Then, for h < hS’

2

min —-E: c =z k'/2h
= m,n3p,q 0

(xm'yn)eRb (xp,yq)eRh+Rb i}

so that
1 < 2h?
min - -7 om n3p q] k(') .
] | N - ]
(x »h )eR, (xp,yq)«?l&hﬂi.D
This statement follows from the difinitions of o and conditions
myn3p,q
(9-5).

Therefore, for all mesh points in ﬁb R
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}: . Gi,j;m,n[-MOsm.n]
(X2 ¥ )Ry

(9.17)

A

(2h2/k6) max

_ gy 1
(egpy ek

A

3,4
(2h /ko)k6 .

Now, let ib consist of all mesh points in Rb which do not have
rectangular neighbors which are not in R + S, For each such point
(xm,yn), one diagonal neighbor is not in R + S, and from the definition

of g at such a point, we have

S (4/3)ThQ B} + o(h?).

5,

Also, for the points under consideration,

2, 2 .2 . 2,2 2
- Z Om,n3p,q 2 me’n/h (@+p”) = 2nm’n/h (@ +°)

(xp.yq)eRh+Rb

Thus, from (9.12)

h2(a2+62)/231:1’n > Z 6y yimm -
(xm’yn)eﬁb

Therefore,
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E: - Gi,j;m,n[-Mbgm,n]
(x >y, )eR,

s (4/3)1Q h Z Gi’j;m’nnl;’n + o(hz)
(s JeRy

s (4/3)70 h° Z @%+8%) + o(h?)

(xm’yn)eRb
3=.:.3 number of mesh 2
8 (4/3)n°Qh points in f{b + 0(h%)
3= .3 number of mesh 2
s (4/3)7Q h points in R_ + 0(h“).

Since the number of mesh points in Rb does not increase faster than

~1

h ~, we have

(9.18) Z 61, 3 sm,nl Modm al = o(h?).
(xm’yn)eﬁb

From inequalities (9.10), (9.17), and (9.18), we have the desired
result, that the solution of problem 132 is O(hz) for h < min {hi},

i=3, 4, 5.




CHAPTER X
ADDITIONAL FINITE DIFFERENCE OPERATORS

The finite difference approximations given. in Chapter III can be
used to approximate any uniférmly elliptic partial differential equation;
however, they might not be convenient for use for some problems since the
difference quotient used to approximate azulazz might involve values of
the solution at mesh points which are far away from the mesh point of appli-
cation. An approximation with accuracy and generality equal to the approxi-
mations given previously but thqh involves values of the solution only
at nearby mesh points is given in this chap;er for use with such problems.

Consider the mesh point configuration given in Figure 10.l1 and
assume that 1(xi,yj) has been determined to be between w/4 and 7/2 as
indicated. Let &h be the distance between the mesh line x = x, and

i

the intersection between the mesh line y = and the line =z

Y41 1,3°

‘3h..l/zi.i

/ /i, §)

FIGURE 10.l

97
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We consider the following approximation to azu/azzz

2 .\ 2 2
(10.1) (@7u/027)y 4 = E‘i-fs,jﬂ“ 2ag, 5t “i-a.j-l__]/d

+ dz[fa“u/az“)it¢’jté]/1z, 0Osp, 6s1,

where d = h(1+82 1/2.

If and u can be approximated to O(hp) in terms

Y145, 341 1-8,3-1
of values of u at mesh points near the point (xi,yj), say by expressions

of the form

- p
(10.2) Yse, 41 Zzi,jui,j + o(hP),

then these expressions can be substituted into equation (3.15) to obtain a
difference quotient with a truncation error which is O(hp-z).

In order to approximate azu/azz to O(hz), Uiis, 41 and u o j-1
4 ?

must be approximated to O(ha); thus, values of u at four neighboring mesh

points must be used in the approximation (10.2). A possible approximation is

(10.3)  uy o iy =" [zs(l-a)(z-zs)/ejui_]”j+l + [__(1-1-6)(1-8)(2-8)/2:[ui’j+1
+ B9)28)/Zuy,y 1 - BUOILD/E]u, (o + o(n™).

A similar expression gives to O(ha) in terms of u

Y3-8,3-1 1-2,4-1°

Ui-1,3-1"%,3-1, 204 ¢

i+l,j-1"
Obvious modifications of the above procedure yield approximations

to azulazz which have truncation errors which are O(hz) and which depend

on values of u at nearby mesh points for any value of 1, 0 <t <m7. If
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three-point interpolation formulas are used in place of (10.3), the trunca-
tion error of the resulting approximation to bzu/az2 is 0O(h).

For mesh points near the boundary, special situations might arise
which require special treatment. The variety of such special situationg
is significantly diminished if we consider only convex regions R. We,
therefore, make this assumption for the remainder of this discussion.

If one or more mesh points in N(xi,yj) are not in R + S, the
linear interpolation procedure due to Collatz can be used to determine
U(xi,yj). By this procedure, the operator Lb1 (see Chapter II1I) is ob-
tained, Approximations which legd to operators similar to the operator
Lb2 can also be formulated. Suppose for a mesh point (xi,yj) that the
point (xi+6,yj+1) is not in R 4+ S (see Figure 10.2). Then Bzulbzz can

be approximated by

(10.4)  (u,,)y 4= 2[0 /AL - ug A+ o /OWLI]/E + On).

j

If the point is in R + S but one or more of the points

14527 541
(xp,yq) which would normally be used in the interpolation formula for

ui+6,j+1 is not in R+ S and if zi,j

a point which is within a few mesh widths distance from the point (xi,yj),

intersects the boundary S at

then the value of u equal to the boundary value at the point of intersec~
tion can be used in equation (10.4). Alternatively, for sufficiently small

values of the mesh width, can always be approximated to the de-

Y148, j+1

sired accuracy by interpolating between values of u which might be asymetri-
cally located with respect to the point (x Y.,1). The above remarks re-
45,7 j+1

garding the point apply also to the point (xi-s’yj-1)°

(1451341

One of the methods discussed above can be used at points near the

boundary to formulate an approximation to azu/bz2 which has a truncation
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error which is not greater than O(h) and such that the coefficients of
the boundary values involved in the approximation are alwa&s positive.

We denote the finite difference approximations to ézulbzz which
are discussed above at regular mesh points by c&G)zui,j. Let vi,j be

- an arbitrary function defined on Rh+ R+ Rs. We define the finite differ-

ence operator th by

A

I
.FIGURE 10.2

Lp1Vi,g = 81, @V Yy, g+ 2y j@V),y g ey jOVDyVy
(L0.5) - - + di,j(Aw)xvi,j + ei’j(A+V)yvi’j + fi’jvi,j

- 8i.j., (xi’yj) .e' .R].\’

" vwhere the coefficients satisfy conditions (6.1). We replace the approxi-
mation to azulbzz in the operator L , b& one of the approximations dis-

cussed above for use at pointé near the boundary to form a difference opera-

tor which we denote by Lb3’

We formulate a boundary value problem as follows:
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(10.6) A thvi.j -8y o (xi.yj) € Ry
(10'7) Lb3vi,j - Si’j 14 (xi’yj) € Rb
(10.8) v(x,y) = B(x,y), (x,y) € Rg.

The finite difference operators L and Lb3 can be written

hl
in the following form.

Latve, g ™ Z Oy, {smn'mn’ Xi2Yy) € Ry
(X2 Y ) ERFR HR
(10.9)
Lyavy,y = Z 1, 4smn’mn’  K10Yy) € Rye
) (xm’yn)eRh+Rb+Rs

The coefficients in (10.9) satisfy the following conditions:

(10.10) o <0
1,331,] (xi.yj) € R'h+Rb
(x ,y ) e R+ R+ R
(10.11) }: o i3mn S loi,j;i,jl m*Yn) € Byt Rpt Bg
(m,n)¥i, ]
(10.12) Of, y3myn = 00 (Xpp¥y) € Ryt Ry (xp0y)) € Rg.

We note that condition (10.11) is not the same as the condition of diagonal

dominance given in Chapter I1I since not all of the o

are nonnega-
“1,j3m,n

1
tive., However, the coefficients which are negative are only slightly negative’,

lFor example, the minimum value of the negative coefficients in equa-
tion (10.3) is -/3/27 = -,064.
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and the finite difference operator seems to have many of the same charac-
teristics as diagonally dominant operators.

In order to establish additional properties of the operators th
and Lb3 , we assume that, corresponding to a given value of the mesh width
h < hl’ there are N mesh points in Rh+ Rb and that there arg (M-N)
points in RS. We write the set of simultaneous algebraic equations com-
rising the problem given by equations (10.6), (10.7), and (10.8) in matrix

form as follows:
N - Py
(10.13) AV=G+B9

N .
where the matrix A is an N X N matrix whose elements are the coefficients

L
i,i3mn where (xi,yj), (xm:yn) €R +R,V is an N component vector

-
with components v which comprise the solution of the given pxoblem, g

1,3

-
is an N component vector with components gy i B is an N x (M-N) matrix
?
whose élements are the coefficients oi,j;m,n where (xi,yj) € Rh+ Rb and
-l
(xm,yn) € RS’ and @ 1is an M component vector with components equal to -

the boundary values at points in RS'
-

Matrices such as the matrix A which occur in the formulation of
finite difference approximations to elliptic partial differential equations
are frequently of monotone type. A matrix M 1is said to be monotone2 if
A > A
Mx 2 0O implies that x 2 0 for any real vector x. A necessary and suf-

-
ficient condition for a matrix M to be monotonic is that all elements of
the inverse matrix ﬁbl be nonnegative. It has been shown by direct com-

putation that the negative of the matrix Z’ in (10.13) is monotanic for a

2collatz. [1960], p. 43.
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number of cases. This appears to be true for cases resulting from the use
of either three-or four-point interpolation to determine values of the so-
lution function at points between mesh points for use in approximating
azu/bzz. We assume for the remainder of this discussion that -ﬁ is always

monotonic for h < hlg thus,
(10.14) A s0.
Next, we prove

-
LEMMA 10,1, For h < hl’ the matrix A 1in equation (10.13) is non-

singular.

Proof: The diagonal elements of the matrix K are the coefficients

- :
oy 331,34 The nondiagonal elements in any row of A are the coefficients
’ ’ .

o in equation (10.11), For h < h,, the magnitude of the diagonal
i1,jsm,n 1

-
element in each row of A exceeds each of the nondiagonal elements. Thus,

a a
the rows of A are linearly independent, and A 1is nonsingular.

- .
LEMMA 10,2, If g = B'- 0, then equation (10.13) has only the trivial

-
solution V = O,
Proof: The proof follows immediately from Lemma 10.1,

As in Chapter IX, we formulate a discrete analogue of a Green's
function for the problem given by equations (10.6), (10.7), and (10.8). The

'
Green's function G is defined for each mesh point (xp,?q) € Rh+Rb+Rs

i,jsmyn
by
(10.15)

cm’n;p’q - 'a(xioyjlxpqu)o (xiiy:]) € Rh+ Rb

(xm’yn)GRH+Rb+RS
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(10'16) Gi’j;p.q - S(Xi’y:i,xpyq)' (xi'yj) € RS

LEMMA 10.3. For h < h,, the Green's function exists and is unique.

1

Proof: The existence and uniqueness of the solution of equations

(10.15) and (10.16) follows from Lemma 10.1.

LEMMA 10,4, Let vy j be an arbitrary function defined on Rh +
L

Rb + RS' Then for any mesh point (xi,yj) € Rh + Rb + RS’ for h < hl’

vi,j = }2 .Gi,j;m,n[-thvm,nJ
(xm» yn) eRh
(10.17)

+ }: Gi,j;m,n[-Lb3vm,n] + }: Gi,n;m,nvm,n'
(xm’yn)eRb (x_»y_)eRg

Proof: As in the proof of Lemma 9.2, we let w

represent the

i,j
) is a point in R If

right side of (10.17). If (x s V -
8" "1,j

'Y Yi,5°

(xi,yj) is a point in Rh(Rb), thvi'j.- thwi,j(Lb3vi’j - Lbswi,j)j Thus,
L1 (Vg 37,50 = 0 0 Gpyp) € By
Lya(vy yo¥y, ) =0 » (xy)) € Ry
Wy ™y ) =0, (xy) e R

and from Lemma 10,2, Vi,g " Y,y (xi,yj) € R +R +Rg.
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LEMMA 10.5. For h < h,, the Green's function G is non-
—_— : 1 i,jsm,n
negative,
Proof: We extend the definition of o to include points
- i,js3m,n
in Rs as follows:
(10018) Ui,j;m,n = 5(x1-yj3xm:yn)o (xiiyj) € RSO (xm’yn) € Rh+ R'b'

For convenience, we assume that the mesh points in Rh+ Rb are numbered

from one to N, and we denote the coefficients o and the function

i,jsmyn

G by

i,jsm,n ci,j and Gi,j' ls i,m $ M, respectively. Here the subscripts

i and j take the place of (i,j) and (myn). In this notation, the ma-

-
trix A 1is given by

12 s 1N

o]

N1 N2 NN

L

-
and the matrix B 1is given by

.

9,8+ %1,N42 °1,Mq|

]

92, N+1 E

-h 1
-B- R
(0]

N’N+1 es e ¢ ,M




From (10.15), (10,.,16), and (10.18) the functions

(10.19)

where

S

-

G

-

G12 is an

-2
G21 is an

Y
G22 is an

-
and T, .

-
I is the

- -
11 C12 -1
-h -
61 I

(M-N) x (M-N) identity matrix,
11 is an N x N matrix,

N x (M-N) matrix,
(M-N) x N matrix,
(M-N) x (M-N) matrix,

is the N x N identity matrix.

From (10.19), we have

(10.20)

(10.21)

(10.22)

- e - ad -
AGy =BGy =L
- e -
AG,-8 =0

-

Gy, =0

From (10.14), (10.20), and (10.22),

and from (10.12), (10.13), (10.14), and (10.21),

G110 “Thypr 20s

Qa1

-
G12 = A Bz O.
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Thus, G = G

1,1 is nonnegative,

i,j3m,n

Now, recall the function ﬁi j given by equation (6.26). We have
1 4

LEMMA 10.6. For h < h3, the second difference quotients with
respect to 2z 1in the operators th and Lb3 when applied to the function

? are nonpositive.
i,]

Proof: Let (xi.yj) be a regular mesh point, Then, two essen-

tially different cases might arise, If O < tan T < 1,
—\ I C o S | i-1t,.2
(AV)zpi.j [02 202 + o, :lxld

i-1

- -0'2

2 2
(02-202+1)/d

1A
o

for 0y 2 1. Now, suppose tan T > 1 (see Figure 10.1). If we had exact

values for p at (xi+8’yj+1) and at (xi-s’yj-l)' then the difference

quotient with respect to =z would be given by

— i+ , 1 18, ,,2
oﬁv)zpi’j -(02 -202 + gy /45, 0 <8 <1, gy z1
(10.22) - -t BB 2B + 1)/74%,
2 2 2
=0
for 0<®38<1l, ozl.,
148 i-8 |
If we substitute interpolated values for gy and g, in (10,22)

and if the interpolated values are sufficiently accurate, we would expect the
inequality above to be satisfied. That this is true for three-point inter-

polation is readily verified as follows. We use the mesh point configuration
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given in Figure 10.l.as an example to obtain

2 2

2
— 1186 -1 . 548 8°-8 =2
OA‘V)zpi’j -0, [ 3 0, ¥ 2 95 2 + 2 95 + (1-59)
2
818° -1] .2
+ > 02:,/d
21 2
o) 02((1/02) -2+ 02)/d .

£0

for 0<d <1, cegl.

™R

The use of four-point interpolation formulas for values of at

(xi+6'yj+1) and (xi-a’yj-l) results in
(A—V)zsi g = -o; [8(82-1)0;,2/6 + 8(2—6)(26-&-1)0;1/3 + (1-52)<2-s)
+5(2°8)(B+1)0,/3 + 8(82-1)02/6 . 2] /a2 .

Since four-point interpolation is more accurate than three-point interpola-
tion and since the inequality (10.22) is valid for three-point interpolation,
the expression above should satisfy (10.22) also.

If tan v is negative, a similar analysis applies at mesh points in
Rh.

If (xi,yj) is a mesh point in Rb’ an extension of the proof of
Lemma 6,9 abplies. The detailing of this extension to cover all possible

cases would be extremely long and is omitted,
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Since all difference quotients in th and Lb3 except for the
difference quotients with respect to z are the same as the difference

quotients in the operators L, and Lb respectively, Lemma 10.6 can be

h 2

used to prove Lemma 6.10 for the difference operators th and Lb3’ and

we have for h < h3,

thsi,j s -1’ (xilyj) € R-h

Lb3$i,j s -1, (xi’yj) € Rb-

(10.23)

Next, we prove

LEMMA 10.,7. For h < min [hl,h3,h4}. and for any mesh point

(xi,yj) € Rh+ Rb+ RS’

pzx Ez '
= G
€ i,jsm,n

(xm’yn)eRh+Rb
where My is defined by Corollary 1 to Theorem 6.3.

Proof: From Lemma 10.4, we have for (xi,yj) € Rh+ Rb+ RS

pi,j = E: Gi,j;m,n[-Lhiﬁm,n]
(x »y, )eRy

+ }z Gi,j;m,n[-LbBSQ,n]
(xm’yn)eRb

+ }: Gi,j;m,npm,n'
(xm’yn)eRS




110

Since P, . 1is nonnegative, we have from Lemma 10.5 and inequalities
Pij g

(10,23),

5 2
pitj B Gi’j;m’n,

(xm’yn)eRh+Rb
and by Corollary 1 to Theorem 6.3,
euzx 2 }E G, .
i,jsm,n
(xm’yn)eRh+Rb
for (xi,yj) € Rh+ Rb+ RS’ h < min (hl’h2’h3)'
We consider next the following boundary value problem
LyaVi,g ™ 81,5 » (xpp¥y) € Ry
(10.24) Lb3vi,j n gi’j R (xi,yj) € Rb

Vi,j * O ’ (xi’yj) € RS

where and gi j are given functions. We prove
»

i,

THEOREM 10.1. The solution Vo of the problem given by equa-

s ]

tions (10.24) is bounded as follows:

Proof: From Lemma 10.4, we have

vioj - Gi,j;m,ngm,n - }: Gi,j;m,ngA,n’ (xi’yj) € RH+ R .
(x .y, )eRy, (x .y )eRg




111

Thus, by Lemma 10.5

and by Lemma 10.7

MaX
|vi,jl se 2 {max |gi,jl + max |gi.j|}, (xi,yj) € R+ R.

The methods used in Chapters V, VII, and IX can be used together
with Theorem 10.1 to show that the solution of a discrete analogue of
problem PO’ which utilizes the difference quotients given above, converges
to the solution of problem Po as the mesh width is decreased.

A boundary value problem is obtained, by the methods of Chapter V,
for the error in the discrete analogue of the given problem. The boundary
value problem for the error is of the form of the problem given by equa-
tions (10.24), The functions g and g' will be O(hp) where p depends
on the exact form of the difference quotients used.

The Brouwer Fixed Point Theorem is used as in Chapter VII to show
that the error is bounded by a quantity which is proportional to Py,

If g is O(hz) and g' 1is O(h), then the methods of Chapter IX are

applicable and can be used to show that the overall error is 0(h2).




CHAPTER XI

APPLICATIONS

1, Linear Elliptic Equations

The results which have been obtained in previous sections for
Dirichlet problems for nonlinear elliptic partial differential equations
are applicable to Dirichlet problems for general, linear, uniformly ellip-
tic partial differential equations as special cases.

In order to illustrate this, we consider the problem given by

A(x,y)azu/ax2 + C(x,y)azu/ay2 + D(x,y)du/dx + E(x,y)du/dy
(11.1)
+ F(x,y)u = G(x,y) , (x,y) €R

(11.2) u(x,y) = #(x,y) s (x,y) € 8.

The region R with boundary S is assumed to satisfy the smoothness con-

ditions given in Chapter II. The coefficients and the function @ are

assumed to have H8lder continuous partial derivatives ‘- of: second and

fourth order respectively, and the function F is assumed to be nonpositive.
Equation (11.1) is uniformly elliptic if there exist positive constants

ko- an? ki . such. that

kl z A(x,y), C(x,y) = kO

g (x,y) € R + S.
k; 2 [DGxy)|s |EGxy)]

The uniform ellipticity of equation (11.l1),-the .conditién.:that F

is honpositive; -and the «conditions.on: R: .are sufficient to -guarantee that
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the. . given;problem has a unique solution u.

We now make the additional assumption that, for h < 2k0/k3, a set
of mesh lines can be superimposed over the region R 1in such a way that
the four rectangular neighbors of each mesh point in R are in R + S,
i.e., all mesh points in R are regular mesh points. This assumption is
in no way essential but does siﬁplify the following discussion.

Corresponding to a given set of mesh lines, an approximating finite
difference boundary value problem is formulated by replacing the partial
derivatives in equation (11.1) by central divided differences. We have

(11.3)
+ E(xi’yj)(A+V)in,j + F(xin)’j)Ui,j - G(xiiyj)’ (xi’yj) € Rh

(11.4) Uy = B0eyy) s (rpay) € Ry

The coefficients in equation (11.3) satisfy conditions (6.1), and by Lemma

6.2, the finite difference problem has a unique solution for h < Zko/k1°
A finite difference equation for the error in the solution of the

problem given by equations (11.3) and (l1.4) is obtained by substituting

for U in equation (11.3) from the equation

(11.5) U, =y + €

i,] i,] i,]

where ei j is the error. We obtain
-9

A(xi,yj)oxv)x(ui’j+ ei,j) + C(xi,yj)QSV)y(ui,j+ €. )

i,]
(11.6) + D(xigyj)0A¥V)x(ui,J+ ei,j) + E(xi,yJ)Q&¥V)y(ui’j+ ei,j)

+ F(xisyj)(“i’j'*‘ ei,j) = G(xi’yj)l (xi,yj) € R-hO
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By using relationships such as equations (3.13) and (3.14) and the fact
that the difference quotients are linear, equation (11.6) can be rewritten

as
A(xi’yj)%v)xei,j + C(xi’yj)(Av)yei,j + D(xi’yj)mw)xei’j
+ By y Y@ ey |+ FGrypey y = b AGLy (),
(LL.7) G e,y J(Ng), 4+ 2D(x 5y, ) (M) o+ ECri,y ) (N3)y 41712

- A,y YRR/ | - Clxyay @7/’ - DOy Q0

= E(Xi’yj)(au/aY)i’j - F(Xi»yj)ui,j + G(xityj)

where (Mi) and (Ni) have the same meaning as in Chapter V.
The last six terms in equation (11.7) sum to zero because of equa-
tion (L1.1). The finite difference boundary value problem for the error

is then given by

A(xi’yj)(AV)xei,j + C(xi»yj)(AV)yﬁi’j + D(xi’yj)(A+V)x€i,j

(11.8)

+ E(xi’yj)%w)yei,j + F(xi’yj)ei,j - H(xi’yj)’ (xi’yj) € Rh
(11.9) ei,j =0 , (xi,yj) € Rs
where

BOxg,yp) = -h2[AGeLY @)y + Cuy M)y 5+ Dlxgay ) (My)y g

+ E(x;,y,)(N)y (712,
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Lemma 6.2 applies to the finite difference problem for the error;
thus, for h < 2ko/k1, the error is uniquely determined. Theorem 6.1 also

applies to the finite difference problem for the error, and we have, for

h < 2k0/k1,
max le. .| s p, . max |BCx,,y,)|
i,] i,j 177}
(xi’yj)eRh (xi’yj)eR-h
2, X/h - - - -
s b0 Dk [M+ N+ 2M ¢ 28;]/12
where

2 2 2.1/2
. [1+ b/ 2k g+ /2Ky ( kyHe +h°) ]
1 I-h k,/7k,

and X is the maximum distance across the region R, From Corollary 1 to

Theorem 6.1, there exists an k such that, for h <'§,

2 MX oo o
" max)e ei’jl s b "k [M+ N+ 2Mg+ 2N;]/12
i’yj Rh
where »
2 1/2
b [l ] + 6k Y 2

Thus, we have an a_priori bound, for h sufficiently small, for
the error which is proportional to hz.

We note that the restriction on the region R which enables the
construction of mesh lines in such a way that all interior mesh points are
regular mesh points 18 unnecessary. In case irregular mesh points exist,
asymmetric difference approximations such as those given by equations (3.25)
and (3.26) are used. For such a problem, the above analysis results in an
error bound which is proportional to hj however, the techniques developed

in Chapter IX are applicable, and an error bound which is proportional to
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h2 can be obtained.

In addition, equation (11.1) is easily generalized to include a
mixed derivative term. If equation (l1l.1) contains a mixed derivative
term, it is necessary to apply the transformation given in Chapter III be-
fore proceeding with the analysis given above.

As was noted in Chapter I, error bounds on solutions of finite dif-
ference approximations to Dirichlet problems for some linear elliptic par-
tial differential equations are given in Gerschgorin [1930]. Gerschgorin's
results are briefly summarized as follows.

Congsider the Dirichlet problem given by
(11.10) Lu = G(x,y) , (x,y) € R
(11.11) u=@8(x,y) , (x,y) €8

where L is a linear elliptic operator, and where the coefficients in L,
the functions G and $, and R + S satisfy the smoothness conditions
given at the beginning of this chapter.

Assume that an approximating finite difference boundary value prob-
lem is formulated by the use of the difference quotients given in Chapter
III, and let the error in the solution of the finite difference problem
be denoted by €. Let the region R be included in the circular disc

which is bounded by
2 2 2
(x=x3)" + (y=yg5) " = .
Then, if L is the Laplacian, i.e.,

L = 3%/3x% + 32%/3y2

and G(x,y) m 0, for h sufficiently small,
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2

(11.12)  max |e| 5 h’r® max(l,,§,)/12 + h° max(i,,F,).

The second term on the right side of equation (11.12) is present only when
the region R contains irregular mesh points.

Gerschgorin considers two other special cases. Let L be defined

by
(11.13) Lu = A azu/ax2 + C Bzu/ay2 + D du/dx + E du/dy + Fu

where A >0, C >0, and F s 0. If, in addition, the coefficients D and

E are everywhere positive and
A+C+1+27r%F/2>0
D+E+V2rF>o0,

then, for h sufficiently small,

2 2(M,,N, ) (A+C) (M, N,) (D+E)
le| = lz-lz[(l-b-Zﬁ)rzmax 3 8 1+ 4/2 r max T30 ] .
z(x+c>+(1+2ﬁ')rrf . D+E+ V2 rF

For the second special case, L 1is defined as in equation (11.13),

the coefficients D and E each have the same sign throughout R, and
Ip| + |E| + V2 rF > 0.
In this case, for h sufficiently small,

08D (A4C) () (|DHE)
) + &/2 r max
A+CH(1+22 )rF |D+E|+ V2 rF

M

le| = (1+2/3}r2 max

h
24
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By comparing the error bounds on solutions of finite difference
approximations to Dirichlet problems for linear elliptic partial differ-
entia} equations which are derived at the beginning of this chapter with
Gerschgorin's results, we conclude that our results are much more general
but that Gerschgorin's results are much sharper. For example, for the
Dirichlet problem for Laplace's equation, our error bound increases expo-
nentially with the diameter of the region R whereas Gerschgorin's error
bound increases as the square of the radius of the region R. On the other
hand, Gerschgorin's analysis applies only to special cases, whereas our
analysis is applicable to the Dirichlet problem for any linear, uniformly
elliptic partial differential equation which satisfies the given smooth;

ness conditions and for which F s O.

2, A Nonlinear Problem

The solutions of many of the problems associated with nuclear
reactor design are obtainable only as finite difference approximations.
We consider here a relatively simple problem in this field which might
be encountered in the design of a research reactor containing a neutron
irradiation facility,

We assume that the irradiation facility consists of a long pipe
through the reactor core with an elliptic cross section and that we are
interested in determining the thermal neutron flux distribution, at con=-
stant reactor power, inside the pipe in a plane perpendicular to its axis,

The thermal neutron flux satisfies the diffusion equation

p(d%u/ax® + 3%u/3y®) - Tu + W= 0
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where D 1is the diffusion coefficient, 2, is the neutron absorption (re-
moval) cross section, and W is the thermal neutron source. The diffusion
coefficient is a positive constant. The neutron absorpﬁion cross section
depends on the rate at which neutrons are absorbed which in turn depends

on the neutron flux. We assume that 2, is given by

Y (u) = a(l + T?%G)f

where « and ¢ are positive constants. The thermal neutron source is
related to the neutron scattering and absorption rates at thermal and higher

neutron energies, We assume that W can be approximated by

W= y - eu/8

where 7y and & are positive constants.

The thermal neutron flux at the surface of the irradiation facility
is given by a function $ of position only.

The thermal neutron flux distribution in the plane perpendicular to

the axis of the irradiation facility is then the solution of the problem

given by

(11.14)  32u/3x° + 3%u/dy” = % [@(1+ licu)wxﬁ-eu/s- 7] , (x,y) € R

(11.15) u = #(x,y), (x,y) € 8§

where R. is the region subtended by the facility in a plane perpendicular
to its axis and S 1is the boundary of R (see Figure ll.i).
Equation (11.14) is uniformly elliptic with ko and k1 of condi-

tion (2.2) each equal to unity. Condition (2.10) is satisfied provided
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Y

W) " agw?® | -

~

‘a (1 + 1 ) ——gg!;—-'+ % eu/S o

for 211 (x,y) € R and for all nonnegative u.} We assume that this is .
true,

The coefficlents in equation (ll.14) satisfy all necessary condi-
tions given in Chapter II and we ass;me tﬁat the function @(x,y) does

.also. In addition, the region R 1is sufficiently smooth.

X =

FIGURE Il

For purposes of illustration, a rather coarse sct of mesh lines is
superimposed over the region R in Figure 11.1. The interior mesh points
on the major gxis of the ellipsae, except the ones nearest the boundary,
are repular mesh points; ;11 other; are irregular. At the regular mesh

points, the partial derivatives in equation (ll.14) are approximated by

1From physical considexations, we know that u 1is nonnegative.
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symmetric difference quotients to obtain finite difference equations for

u. The finite difference equation at the point (xi,yj) is, for example,

@), Uy,y * OOy

1 1 i
-5 Ex(l + mi—'j)ui’j*- exp(u——gi) - ] .

At irregular mesh points, the partial derivatives can be replaced by dif-

(11.16)

ference quotients such as the one given by equation (3.19); or, alternatively,
the approximate solution U can be expressed at irregular mesh points in
terms of its values at an adjacent regular mesh point and an adjacent boundary
mesh point, i.e., by equation (3.15)., We assume that the second alternative

is used; then U at the point (xm,yn) is given by
11.17 - A1) ]U 1/(AF1)]JU .
(11.17) Up o = [MOWDIU, o+ [/ OWDIY,

An equation such as (11.16) or (11.17) is applicable at each mesh
point in R. These equations comprise a nonlinear system of algebraic equa-
tions with an equal number of equations and unknowns. This system can be
solved by one of the methods mentioned in Chapter IV. The error analysis
which has been presented in previous chapters can be applied to the differ-
ence E between the solution of this system of equations and the solution
of the given problem,

The finite difference problem for the error is derived as follows.

We first substitute for the approximate solution in equation (11.14) from

U=u+ E

to obtain
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OV Cug 4B ) b V) (uy )

1 1
= B[“(l“' T+ (u, j+Ei’j)) (uy 4 +E )
u +E
b oxp hallhal ,J ,

By using an expansion such as equation (5.3), the right~hand side of equa-

tion (11.18) can be written as

o=
/'H\
+
’—4
+
ve
~
c
-
!-‘-
u.
~
S’
~
(-]
[
e
[
e
~r
+
L]
»®
g~
—
[+
o
+
o]
(=3
~——
]
~
| IR |

E l 1 - t(u, +6E, .)
+ 3 f [Ex(1+ 1+ (u e )) S ——"
0 , 1,37 °1,) (l-i{u’i’j-isﬂ o)

+8-exp(_d__.a)J }

By using this expansion and relationships such as equation (3.14), we can

write equation (11.18) as

2 2 2 2
OO By gF OB 5+ By iRy = By,y - QTu/ox)y = (Bulyy

1 1 !
+ Bl;a(l-i- 1—_‘_—51-;-’-;-)111’.1 + exp (_gl> - jl

where
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o

.1 1
'/0 HH 1’“;(“1.3*“1.1’) :

0%

R Y s W LA R (Rt ﬂdo

(1+§ui’j+§Ei,j9)2 5 &

and

By,5 ~ -h? [(a‘*u/ax%m’j + (a4u/ay$1.jt¢]/1z, 0se,psl.

The last three terms in this equation sum to zero because of equation (11.14),

and we have at regular mesh points
LE, ,= (AV).E, ., + (AV £ E, . = .
nF,g T OVEL 5 ¥ OGE 3+ 84,58,y T By

The mesh point (xm,yn) is a typical irregular mesh point, At
this mesh point, we have from equation (11.17)
Ynn + Em,n - [?\/(?\+1)](ui’j+Ei.j) +[1/(?\+1)]up’q, 0<A<L,

By rearranging this equation and using relationships such as equation (3.22),

we obtain

LblEm,n - Em,n - [K/(k+1)]Ei.j - g&,n

where g& 0 is the product of h2 and a linear combination of second par-
’

tial derivatives of u with respect to either x or 'y.

The finite difference problem for the error is then given by
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Epfiy T Bry 0 Gy € Ry
L1y, q= 81,y » (poyp) € Ry

E(x,y)= O » (%,¥) € RS

where gi j and gi j are O(hz). This finite difference problem is the
? H
same as problem Pl, Chapter V; and from Chapter VII, for h sufficiently

small, its solution is bounded by a quantity which is O(hz).

3. The Problem of Minimal Surfaces

In this section, we discuss the numerical approximation of the solu-
tion of a Dirichlet problem for an equation which contains a mixed deriva-
tive term. The principal purpose of this discussion is to illustrate the
use of the transformation given in Chapter III for equations containing
mixed derivative terms.

Let R be a region in the x,y plane which is bounded by a Jordan
curve S. Let @ be a closed curve in x,y,u space which has a one-to-one
projection onto S. The problem of determining a function u(x,y) which
is continuous in R+S, has continuous derivatives up to second order in R,

reduces to P on S, and satisfies in R the partial differential equation

(11.19) [l + (Bu/By)z]azu/sz - 2du/dx du/dy Bzulaxay
+ [1 + (du/3%)%13%u/3y% = 0

is known as the problem of minimal surfaces.2

2This problem is alsc known as Plateau's problem.
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In order to state an existence theorem for the problem of minimal
surfaces, we first describe what is meant by a three-point condition.
Let S* be the curve defined in X,y,u space by the équation u = @#(x,y).
Let P?, P;, and Pg be three distinct points on S* and denote by ©
the positive acute angle between the x,y plane and the plane passing
through Pt, P;, and Pg. If, for all possible positions of the points
Pt, Pg, and Pg, the quantity © 1is less than or equal to some fixed finite
constant A, then the boundary function @ satisfies a three-paint conditimn with constant A.3

We now state the following4

THEOREM 11.l. Let there be given, on a convex Jordan curve S in

the x,y plane, a function @ which satisfies a three-point condition
with some constant A. Consider all functions u(x,y) which satisfy, in
the region R .bounded by S, a Lipschitz condition and which reduce on S
to the function @. Then there exists in this class a function uo(x,y)

which satisfies the partial differential equation (11.19).

We assume in the following that the region R 18 convex and that
$ satisfies a three-point condition with some constant A.

Because of the three-point condition, the boundary function @
also satisfies a Lipschitz condition with some Lipschitz constant M. We
then seek a solution of the given problem in the class of functions F which
satisfy a Lipschitz condition with Lipschitz constant M and which reduce

on S to the function @.

3Rado [1951], p. 49. 1In addition to implying a restriction on the
boundary function @, the three-point condition implies that the curve §
contains no arc which is a straight segment,

4Ibid., p. 61.
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If a function u is in the class F, the first partial derivatives
of u are bounded in absolute value by the Lipschitz constant M. Equa-
tion (11.19) is uniformly elliptic provided the coefficients are evaluated

for a function u € F with kl and ko of condition (2.2) equal respec-

tively to (1+M2) and unity. Condition (2.,10) is also satisfied by equa-
tion (11.19).
In terms of the notation previously introduced, we write equation

(11.19) as follows:

(11.20) A d%u/ax? + 2B d%u/dxdy + C d%u/dy? = 0
where

A=[1 + (au/ay)z], B = -du/dx du/dy, and C = [1 + (Bu/ax)z].

We transform equation (11.20) into the form

(11.21) A' azulaxz + 2B azu/azz + C' azu/ay2 =0

where

A' = A -~ B cot 1T, B! = B(sin 21)-1, C'=C ~B tan T

and

1/2

(11.22) tan T = (2B)"I[C - A + (C2-2ac+a%+ 48212, B # 0.

Here, T 1is the angle between the z and x axes and depends on the
values of the coefficients in equation (11.20) at each point in R. By

equations (11.20) and (11.22),
tan T = -(au/ax)(au/by)-l. (du/dy) ¢ 03

thus
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A' =1 + (Bu/ay)2 - (Bu/Bx)(au/By)z(Bu/bx:).1

B! - - (2u/0x)(du/dy) _ _ (Su/dx)(du/Oy)

sin 27t 28in T cos 7T

(du/dx) (du/dy) 2 2
2030/ ) Bu/oy) L (Bu/3x)T + (3u/0y)7]

]

L [@u/an? + uidy)®

Q
)

1+ @Qu/dx)? - u/ax)2@u/dy) Qu/ay) ™!
and the transformed Dirichlet problem is given by

Bzu/ax2 + [(3u/3x)2+ (aulay)z]bzu/azz+ bzu/ay2 = 0, (x,y) € R

u(x,y) = #(x,y) » (x,y) € 8.

In order to extend the discussion further, we assume that a finite
difference approximation to the above problem is selected and that the
system of nonlinear algebraic equations which result from the discretiza-
tion are to be solved by the 'natural iteration' method which is discussed
in Chapter 1V.

At each mesh point in R, we have a difference equation of the form

(11.23) A',j( (‘3) Dxui"“j”l) + 2B (Ui“))nzuimj*lh c' ( i“;) Dyui“?) 0

where Di, Di, and Di denote appropriate difference quotients.
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We consider first the case when D: is the difference quotient
Oﬂv)z (see Chapter III). The only new problem which we encounter is that
of determining a method for selecting the direction .z at each mesh point
before solving for values of each successive iterant.

The optimum value of 71,j at a mesh point (xi,yj), with regard
to maximizing the coefficients A'(x

) and B'(x ), is given by

i’yj i’yj

(11.24) 7 j - (n U(“;) (nyuf‘;) .

We wish to select an approximation 71 i =t ag/p to 7i,j’ where o and
’

B are positive integers, such that

(11.25) A} ;= [1 + (nxui“i)] KRN 1y ui“;n ul® g z 0

and

wae o= [1e o) - 5 e e o

Moreover, for convenience, the integers ¢« and B should be as small as
possible.

If D Uin; is equal to zero, the z direction is taken to be the

x direction and equation (11.23) becomes

(n) (n+l) 2, (nt+l) _
[? + (D us j).] Din.j + Din j 0.

Similarly, if D Uin; is equal to zero, the direction z 1s taken to be

the y direction, and at this mesh point

(ﬂ+l) (n) (n+l) _
in,j [1 + ( U j)] Din j 0.
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Now, suppose 7i,j ¥ 0. Let n;i,j denoté the integer nearest
nyi,j’ n=1, 2, 3, ..., Take successive values of ?1’1 .to be n§1’j/n,
n=1, 2, 3{ .sep Each successive value of ?l,j is tested to determine
whether or not equations (11.25) and (11.26) are satisfied. The first such
value of ?i’j which satisfies these equations is used to determine the
direction of the line zi,j' By Theorem 3.1, a value of 7&,j can always
be found such that equations (11.25) and (11.26) are satisfied,

The results of applying the above procedure‘to a specific example
are indicated in Figure 11.2, Corresponding to each trial value of ?}

)3’
)

there is a pair of mesh points (xifs’yj+a)' The mesh point (xifﬁ’yj+a
corresponding to successive values of 7i i which would be selected for
1]

73 3 = (0,3 are given in Figure 11,2,
. .

6 l—
A Pl
J,_‘r—T”’—”‘%hl

K‘.j)

e A

FIGURE IL.2

Next, we consider the case when Di stands for the difference quo-
tient Qﬁi)z (see Chapter X). Then 7i j is calculated by equation (1l1,24)
’

at each mesh point (xi.yj) in R. If either Dxui?g or DyU§?§ is zero,

the direction z is the same as in the previous case. Suppose 7 j is
’

positive; then T 1is in the first quadrant (see Figure 11.3). 1If 75 j
9
is greater than one,
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-1
®1,0 = 1,9

and if v is less than one,

1,3

54,1 = 71,3"

Sim{lar relationships hold if 71,3 is ncgative. The distance d 1is
; . _

given in all cases by

- n(sH?

For the configuration given in Figure 11.3, the term QﬁV) U(n+1)

is computed from

.y
Z-i I
< |
(i)
>
¥/
% >

FIGURE 11.3

(n -1) (ni-1) 2
+1 4-1 + U; f d
@v), U(“ ) - Ui:5’3+1 Vi, 3 i-8,3-1] /
4 ) .
.where U£2;13+, and U§?;1§ .1 are given Ly linear combinatioas of
) » ES

A i)

- at nearby points.
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The special problems which might be encountered at mesh points near
the boundary are not explored in detail here since it is not practical to
attempt to generalize such situations any further than has been done in
previous chapters.

The preceding discussion is predicated on the assumption that
U(O) is taken from the class of functions F and that each successive
iterant is in the class F 1in the sense that |DxU§?;| and |DyU§?§|
are bounded at each mesh point in R by the constant M. If, for some
iterant, this condition is not satisfied at all mesh points in R, there
is no problem in proceeding as outlined above provided the first-order dif-
ference quotients are bounded in absolute value by some constant, say M'.
Alternatively, it seems reasonable to expect that, since the solution of
the given problem is known to be in the class F, convergence might be ac=-
celerated if the absolute values of the difference quotients are set equal
to M for purposes of determining 7i,j and evaluating the coefficients

when they would otherwise exceed M,



APPENDIX
ELIMINATION OF MIXED DERIVATIVE TERMS

The method of finite differences is more easily applied to obtain
approximate solutions of problem P0 if the mixed derivative term is elim-
inated. The method for doing this which is described here was introduced
in Bramble and Hubbard [1963] as part of a study of linear elliptic dif-
ference equations. Bramble and Hubbard give a sketch of a proof of the
validity of this procedure; a detailed proof is given here. This proced-
ure can be used to eliminate the mixed derivative term from any uniformly
elliptic partial differential equation in two independent variables pro-
vided the coefficients in the equation are continuous functions of their
arguments.

Theorem 3.1 is proved here. We first prove the following lemma.

LEMMA Al. Let ko and kl be constants and let the coefficients

in the equation

(4l) A(x,y) Beulax2 + 2B(x,y) aeu/axay + C(x,y) aeu/aye = G(x,y),
(x,y) € R

satisfy the condition
(A2) k (£2407) 2 A% + 2Bto + & 2 K (674

for all real values of ¢ and ¢ and for all (x,y) € R. Then,

(A3) AC - B® 2 kg

132
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and
2 2 2

(a4) k] - ky = B,
Also, if

2
(A5) A - |B] s ko/2k, ,
then
(a6) c- |s| > K2/2k

0 1’

Proof: By alternately setting (g,w) = (1,0) and (¢,w) = (0,1),

we have that

(A7) k, 24, C2 k..

Let ko i be any positive number less than ko. Then, by (A2),
b}

At® + 2Btw + Cof > ky i[52+w?],
’

and for all nonzero w,

(58) [A-ko’i](gkn)z + 2B(t/w) + [C-k. .] > O.

0,1

Consider (A8) as a quadratic expression in the unknown (&/w). Since this
expression is nonzero, it has no real roots which implies that the discrimi-
nant is less than zero. Thus,

2
4B~ - 4(A - ko’i][C - ko’i] <0

or



By (A7),
k [A +cC] 2z 2k, k., > 21-.2
0,1i = “%0,10 0,i?
and thus
2 2
Al AC - BS > k7 ..
(A9) 0,1

Let f{k, .} be a sequence of positive numbters such that &k
0,1 9,1

is less than ko for all i and such that the limit as i increases of

{ko i} is ko. Inequality (A9) remains valic "for all {1 and by passing
?

to the limit

2 2
LC - B 2 ko

which proves the first statement of the lemma.

From inequalities (A3) and (A7), we have, respectively,

AC 2 k2 + 32
0
and
2.
k1 = AC,
Thus,
2 2 2
kl - ko + B
or
2 2 2
k1 - ko 2B

which establishes the second statement of the lemma.
Next, assume that (AS5) is satisfied; then, because of (A7), C > 0,
hence

« 2
AC s |BlC + C kq/2k,
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or

(A10) | ac - 8% s [c - |B|1|B| +C kg/zkl.

By combining inequalities (A3), (A7), and (Al0) we obtain
2 2

(A11) ko = [c - |B[][B] + ko/2 .

We substitute ¢ = IN2, w =% 1//3 1into inequality (A2) to obtain

kl 2 A/l2 B +cC/2z2 kq

or
- > + + - =20
k.1 ko 2 T B + A/2 c/2 ko =

from which, by (A7), we have

This inequality together with (All) gives us

2
[c - IB])MK,~ ky] 2 ky/2

0l

or

2
¢ - |B| 2 ky/2 [k, -k, )

and finally

2
c- |B] =2 kg/2k, .

Because of symmetry, it is clear that if

2
C - |B| s ko/2ky s

then
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2
A - |B| > ky/2k,.
The principal result of this appendix is the following:

THEOR[M Al. Tet the coefficients in equation (Al) be continuous
functions of their arsuments and satisfy condition (A2). Then there exist
constants k6 and 7, k6 >0, 1 s 1 <o, such that tan v = y(x,y) can be

specified at each point in R and

lBi:k',C'=C-yBZk(')

A' = A -y
B=3B8B/sin2rz 0

Y(X’Y) = -.*- a/B

where O and P are relatively prime integers

Proof: If B = 0, there is nothing to prove; thus, we assume
that |B| > 0 throughout.

The angle T 41is chosen at each point in R such that B' is
positive; i.e., such that sin 2t has the same sign as B. We divide

inequality (A3) by inequality (A4) to obtain

(A12) AC/BS = 1 + kﬁ/(kf-kg) )

Since we choose 1 such that sin 21 has the same sign as B, Yy = tan 71
also has the same sign as B, and we can multiply (Al2) by (yA)-lB without

changing the sense of the inequality to obtain

(A13) c/yB = B/yA [1 + kg/(kf-kg)].
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Let Rl and R2 be subsets of R such that {f P € Rl’ then

2
A - |B} = kq/2k,

and 1f P e R2, then

2
C - |B| s ky/2 .

By Lemma Al, the sets R1 and R2 are disjoint and by the con-

tinuity of the coefficients in equation (Al), R1 U R, is bounded and closed.
Let P1 be a point in Rl' We choose relatively prime integers

& and P such that
2 2 2,,,,.2,2
(A14) 1 + ky/4(k]-kg) < (P)A/B(P)[|B| <1 + 3ko/4 (k] -kq)

Due to the continuity of the coefficients A and B, there exists an open
set S(Pl) containing P1 such that (Al4) holds for each point in S(Pl)'
Corresponding to each point P in Rl’ there exists such an open set S(P).
By the Heine-Borel Theorem, R1 can be covered by a finite number of open
sets S(P). With each of the sets S(P), there is associated a pair of
relatively prime integers O(P) and B(P) such that (Al4) holds. Since
there are only a finite number of such pairs of integers associated with
any finite covering of Rl’ there exists a constant i such that

15 0a(R), B(P) sy, PeR,.

We take |y(P)| = a(P)/B(P) and sgn y = sgn B. Then in R,

1

(x15) A-vyls> [k§/4(kf-k§)]y‘1n.



By definition, in Rl’

2
IB] 2 A - ky/2k;

v

(a16) [B] = ky/2 .
Also,

-1
(A17) ly]™* > 1/n,.

Therefore, from (Al5), (Al6), and (Al7),

(A18) a-vls > 0801/, -

From (Al4),
(A19) vis/a > 1+ aéraadad1t .
By combining (A13), (A18), and (Al9), we obtain
c/yB > [1 + 3k§/4(k§-k§)]’1[1 + 187 aE-5) ]
> 4/ a5

2,,.2 4 4
>1 + 1<o/4k1 + k0/16k1 + ...

> 1+ 127431/ (1- (574K )

or
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C-vyB> ynkgl (4kf- §)

and since

; ) 3 Pin fuyan:
(420) C - ¥B > Ko/ (ko /k)8n;

Let

o= gl ko4 1,

Then, from (A15) and (A20), we have

A-vyls 4 > >0

C'>x, >0 .

C -~ ¥B 1
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In a manner exactly analogous to that given above, we can show there

exists a constant 17, such that for any point Q € Ry, |¥(Q)| can be chosen

equal to a(Q)/B(Q) where @(Q) and B(Q) are relatively prime integers

and
15 a@), BQ) s,

We then let
3p0,,,2 .2
Ay = ko [17 (< -kp) 1/8n,,

and obtain

Al
o > 2 Q€ Ry,



The set R, U R2 does not necessarily exhaust R. Consider

1

set R - R, U Ra. For each point in this set, we have

1
A - |B] > k§/2k1

and

2
C - |B| > ky/2k,
and we take |y| = 1 for points in this set.

A' >
o > k0/2k1 = l3

for such points.

Now, let

' =
kg min[ll,kz,l3]

and

1 = max[n,,n,].

Then,
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the

Then, for each point (x,y) € R, the angle T can be chosen such that

A',C' 2 K >0,

B'

v

o,
and

v(x,y) = T o/

where @ and B are relatively prime integers and

1sa, Bsn.
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